Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 21(11): 2390-2397, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857623

RESUMEN

Absolute second-order rate coefficients for the reaction of the N- and C-protected amino acids tyrosine (Tyr), tryptophan (Trp), methionine (Met) and proline (Pro) with triethylamine-derived aliphatic peroxyl radical TEAOO˙, which was used as a model for lipid peroxyl radicals, were determined using laser flash photolysis. For Ac-Tyr-OMe a rate coefficient of 1.4 × 104 M-1 s-1 was obtained, whereas the reactions with Ac-Trp-OMe and Ac-Met-OMe were slower by a factor of 4 and 6, respectively. For the reaction with Ac-Pro-OMe only an upper value of 103 M-1 s-1 could be determined, suggesting that Pro residues are not effective traps for lipid peroxyl radicals. Density functional theory (DFT) calculations revealed that the reactions proceed via radical hydrogen atom transfer (HAT) from the Cα position, indicating that the rate is determined by the exothermicity of the reaction. In the case of Ac-Tyr-OMe, HAT from the phenolic OH group is the kinetically preferred pathway, which shuts down when hydrogen bonding with an amine occurs. In an alkaline environment, where the phenolic OH group is deprotonated, the reaction is predicted to occur preferably at Cß, likely through a proton-coupled electron transfer (PCET) mechanism.

2.
Chembiochem ; 24(12): e202200731, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36944581

RESUMEN

Kinetic studies revealed that nitrate radicals (NO3 ⋅), which are formed through reaction of the noxious air pollutants nitrogen dioxide (NO2 ⋅) and ozone (O3 ), very rapidly oxidize phenylalanine residues in an aqueous environment, with overall rate coefficients in the 108 -109  M-1 s-1 range. With amino acids and dipeptides as model systems, the data suggest that the reaction proceeds via a π-complex between NO3 ⋅ and the aromatic ring in Phe, which subsequently decays into a charge transfer (CT) complex. The stability of the π-complex is sequence-dependent and is increased when Phe is at the N terminus of the dipeptide. Computations revealed that the considerably more rapid radical-induced oxidation of Phe residues in both neutral and acidic aqueous environments, compared to acetonitrile, can be attributed to stabilization of the CT complex by the protic solvent; this clearly highlights the health-damaging potential of exposure to combined NO2 ⋅ and O3 .


Asunto(s)
Nitratos , Dióxido de Nitrógeno , Nitratos/química , Dióxido de Nitrógeno/química , Fenilalanina/química , Cinética , Oxidación-Reducción , Dipéptidos/química
3.
Org Biomol Chem ; 18(35): 6949-6957, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32936182

RESUMEN

Tertiary amides, such as in N-acylated proline or N-methyl glycine residues, react rapidly with nitrate radicals (NO3˙) with absolute rate coefficients in the range of 4-7 × 108 M-1 s-1 in acetonitrile. The major pathway proceeds through oxidative electron transfer (ET) at nitrogen, whereas hydrogen abstraction is only a minor contributor under these conditions. However, steric hindrance at the amide, for example by alkyl side chains at the α-carbon, lowers the rate coefficient by up to 75%, indicating that NO3˙-induced oxidation of amide bonds proceeds through initial formation of a charge transfer complex. Furthermore, the rate of oxidative damage of proline and N-methyl glycine is significantly influenced by its position in a peptide. Thus, neighbouring peptide bonds, particularly in the N-direction, reduce the electron density at the tertiary amide, which slows down the rate of ET by up to one order of magnitude. The results from these model studies suggest that the susceptibility of proline residues in peptides to radical-induced oxidative damage should be considerably reduced, compared with the single amino acid.

4.
J Org Chem ; 84(6): 3405-3418, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30742433

RESUMEN

Kinetic and computational data reveal a complex behavior of the important environmental free radical oxidant NO3• in its reactions with aliphatic amino acids and di- and tripeptides, suggesting that attack at the amide N-H bond in the peptide backbone is a highly viable pathway, which proceeds through a proton-coupled electron transfer (PCET) mechanism with a rate coefficient of about 1 × 106 M-1 s-1 in acetonitrile. Similar rate coefficients were determined for hydrogen abstraction from the α-carbon and from tertiary C-H bonds in the side chain. The obtained rate coefficients for the reaction of NO3• with aliphatic di- and tripeptides suggest that attack occurs at all of these sites in each individual amino acid residue, which makes aliphatic peptide sequences highly vulnerable to NO3•-induced oxidative damage. No evidence for amide neighboring group effects, which have previously been found to facilitate radical-induced side-chain damage in phenylalanine, was found for the reaction of NO3• with side chains in aliphatic peptides.

5.
Chembiochem ; 19(9): 922-926, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29460322

RESUMEN

In nature, proteins serve as media for long-distance electron transfer (ET) to carry out redox reactions in distant compartments. This ET occurs either by a single-step superexchange or through a multi-step charge hopping process, which uses side chains of amino acids as stepping stones. In this study we demonstrate that Phe can act as a relay amino acid for long-distance electron hole transfer through peptides. The considerably increased susceptibility of the aromatic ring to oxidation is caused by the lone pairs of neighbouring amide carbonyl groups, which stabilise the Phe radical cation. This neighbouring-amide-group effect helps improve understanding of the mechanism of extracellular electron transfer through conductive protein filaments (pili) of anaerobic bacteria during mineral respiration.


Asunto(s)
Amidas/química , Péptidos/química , Fenilalanina/química , Transporte de Electrón , Electrones , Cinética , Modelos Moleculares , Termodinámica
6.
Chem Asian J ; 11(22): 3188-3195, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27599126

RESUMEN

Absolute rate coefficients for the reaction between the important environmental free radical oxidant NO3. and a series of N- and C-protected amino acids, di- and tripeptides were determined using 355 nm laser flash photolysis of cerium(IV) ammonium nitrate in the presence of the respective substrates in acetonitrile at 298±1 K. Through combination with computational studies it was revealed that the reaction with acyclic aliphatic amino acids proceeds through hydrogen abstraction from the α-carbon, which is associated with a rate coefficient of about 1.8×106 m-1 s-1 per abstractable hydrogen atom. The considerably faster reaction with phenylalanine [k=(1.1±0.1)×107 m-1 s-1 ] is indicative for a mechanism involving electron transfer. An unprecedented amplification of the rate coefficient by a factor of 7-20 was found with di- and tripeptides that contain more than one phenylalanine residue. This suggests a synergistic effect between two aromatic rings in close vicinity, which makes such peptide sequences highly vulnerable to oxidative damage by this major environmental pollutant.


Asunto(s)
Dipéptidos/química , Óxidos de Nitrógeno/química , Oligopéptidos/química , Fenilalanina/química , Cerio/química , Computadores Moleculares , Transporte de Electrón , Hidrógeno/química , Cinética , Rayos Láser , Oxidantes/química , Fotólisis/efectos de la radiación , Termodinámica
7.
Chemistry ; 21(42): 14924-30, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26333002

RESUMEN

The fragmentation-rearrangement of peptide backbones mediated by nitrogen dioxide, NO2 (.) , was explored using di-, tri-, and tetrapeptides 8-18 as model systems. The reaction, which is initiated through nonradical N-nitrosation of the peptide bond, shortens the peptide chain by the expulsion of one amino acid moiety with simultaneous fusion of the remaining molecular termini through formation of a new peptide bond. The relative rate of the fragmentation-rearrangement depends on the nature of the amino acids and decreases with increasing steric bulk at the α carbon in the order Gly>Ala>Val. Peptides that possessed consecutive aromatic side chains only gave products that resulted from nitrosation of the sterically less congested N-terminal amide. Such backbone fragmentation-rearrangement occurs under physiologically relevant conditions and could be an important reaction pathway for peptides, in which sections without readily oxidizable side chains are exposed to the air pollutant NO2 (.) . In addition to NO2 (.) -induced radical oxidation processes, this outcome shows that ionic reaction pathways, in particular nitrosation, should be factored in when assessing NO2 (.) reactivity in biological systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...