Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147336

RESUMEN

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Asunto(s)
Orthoreovirus de los Mamíferos , Receptores Inmunológicos , Receptores Virales , Infecciones por Reoviridae , Animales , Humanos , Ratones , Anticuerpos Antivirales , Orthoreovirus de los Mamíferos/fisiología , Receptores Inmunológicos/metabolismo , Infecciones por Reoviridae/metabolismo , Receptores Virales/metabolismo
2.
Nano Lett ; 22(4): 1641-1648, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35108019

RESUMEN

Ebola virus (EBOV) is responsible for several outbreaks of hemorrhagic fever with high mortality, raising great public concern. Several cell surface receptors have been identified to mediate EBOV binding and internalization, including phosphatidylserine (PS) receptors (TIM-1) and C-type lectin receptors (DC-SIGNR). However, the role of TIM-1 during early cell surface binding remains elusive and in particular whether TIM-1 acts as a specific receptor for EBOV. Here, we used force-distance curve-based atomic force microscopy (FD-based AFM) to quantify the binding between TIM-1/DC-SIGNR and EBOV glycoprotein (GP) and observed that both receptors specifically bind to GP with high-affinity. Since TIM-1 can also directly interact with PS at the single-molecule level, we also confirmed that TIM-1 acts as dual-function receptors of EBOV. These results highlight the direct involvement of multiple high-affinity receptors in the first steps of binding to cell surfaces, thus offering new perspectives for the development of anti-EBOV therapeutic molecules.


Asunto(s)
Ebolavirus , Ebolavirus/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Acoplamiento Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...