Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1306513, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38362586

RESUMEN

Introduction: Sex differences in prenatal growth may contribute to sex-dependent programming effects on postnatal phenotype. Methods: We integrated for the first time phenotypic, histomorphological, clinico-chemical, endocrine and gene expression analyses in a single species, the bovine conceptus at mid-gestation. Results: We demonstrate that by mid-gestation, before the onset of accelerated growth, the female conceptus displays asymmetric lower growth compared to males. Female fetuses were smaller with lower ponderal index and organ weights than males. However, their brain:body weight, brain:liver weight and heart:body weight ratios were higher than in males, indicating brain and heart 'sparing'. The female placenta weighed less and had lower volumes of trophoblast and fetal connective tissue than the male placenta. Female umbilical cord vessel diameters were smaller, and female-specific relationships of body weight and brain:liver weight ratios with cord vessel diameters indicated that the umbilico-placental vascular system creates a growth-limiting environment where blood flow is redistributed to protect brain and heart growth. Clinico-chemical indicators of liver perfusion support this female-specific growth-limiting phenotype, while lower insulin-like growth factor 2 (IGF2) gene expression in brain and heart, and lower circulating IGF2, implicate female-specific modulation of key endocrine mediators by nutrient supply. Conclusion: This mode of female development may increase resilience to environmental perturbations in utero and contribute to sex-bias in programming outcomes including susceptibility to non-communicable diseases.


Asunto(s)
Feto , Placenta , Embarazo , Femenino , Masculino , Animales , Bovinos , Placenta/metabolismo , Trofoblastos , Hígado , Peso Corporal
2.
Appl Microbiol Biotechnol ; 102(21): 9317-9329, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30151605

RESUMEN

Immune function is influenced by the diversity and stability of the intestinal microbiota. A likely trade-off of immune function for growth has been demonstrated in heavier breeds of poultry that have been genetically selected for growth and feed efficiency traits. We investigated the expression of selected innate immune genes and genes encoding products involved in intestinal barrier function to determine whether function changes could be consistently linked to the phenotypic expression of feed conversion ratio (FCR), a common measure of performance within poultry broiler flocks. In addition, we compared individual cecal microbial composition with innate immune gene expression. Samples were utilised from two replicate trials termed P1E1 and P1E2. High (n = 12) and low (n = 12) performing birds were selected based on their individual FCR data from each replicate and combined for microbiota phylogenetic composition and immune gene expression analysis. Toll-like receptor 1 (TLR1La) and zonula occludens 1 (ZO1) were differentially expressed between high- and low-performing broilers. Several taxa were correlated with FCR; of these, unclassified YS2 and ZO1 were also positively correlated with each other. Interactions between taxa and differentially expressed innate immune genes between P1E1 and P1E2 were much greater compared to relationships between high- and low-performing birds. At the level of phylum, reciprocal correlations between tight junction proteins and Toll-like receptors with Bacteroidetes and Firmicutes were evident, as were correlations at the genus level.


Asunto(s)
Ciego/inmunología , Ciego/microbiología , Microbioma Gastrointestinal/inmunología , Inmunidad Innata/genética , Intestinos/inmunología , Aves de Corral/inmunología , Alimentación Animal/microbiología , Animales , Bacteroidetes/inmunología , Dieta , Firmicutes/inmunología , Microbioma Gastrointestinal/genética , Expresión Génica/genética , Expresión Génica/inmunología , Inmunidad Innata/inmunología , Intestinos/microbiología , Filogenia , Aves de Corral/genética , Aves de Corral/microbiología , Probióticos , Proteínas de Uniones Estrechas/metabolismo , Receptores Toll-Like/metabolismo
3.
PLoS One ; 13(7): e0200466, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001361

RESUMEN

The insulin-like growth factor (IGF) axis is fundamental for mammalian growth and development. However, no comprehensive reference data on gene expression across tissues and pre- and postnatal developmental stages are available for any given species. Here we provide systematic promoter- and splice variant specific information on expression of IGF system components in embryonic (Day 48), fetal (Day 153), term (Day 277, placenta) and juvenile (Day 365-396) tissues of domestic cow, a major agricultural species and biomedical model. Analysis of spatiotemporal changes in expression of IGF1, IGF2, IGF1R, IGF2R, IGFBP1-8 and IR genes, as well as lncRNAs H19 and AIRN, by qPCR, indicated an overall increase in expression from embryo to fetal stage, and decrease in expression from fetal to juvenile stage. The stronger decrease in expression of lncRNAs (average -16-fold) and ligands (average -12.1-fold) compared to receptors (average -5.7-fold) and binding proteins (average -4.3-fold) is consistent with known functions of IGF peptides and supports important roles of lncRNAs in prenatal development. Pronounced overall reduction in postnatal expression of IGF system components in lung (-12.9-fold) and kidney (-13.2-fold) are signatures of major changes in organ function while more similar hepatic expression levels (-2.2-fold) are evidence of the endocrine rather than autocrine/paracrine role of IGFs in postnatal growth regulation. Despite its rapid growth, placenta displayed a more stable expression pattern than other organs during prenatal development. Quantitative analyses of contributions of promoters P0-P4 to global IGF2 transcript in fetal tissues revealed that P4 accounted for the bulk of transcript in all tissues but skeletal muscle. Demonstration of IGF2 expression in fetal muscle and postnatal liver from a promoter orthologous to mouse and human promoter P0 provides further evidence for an evolutionary and developmental shift from placenta-specific P0-expression in rodents and suggests that some aspects of bovine IGF expression may be closer to human than mouse.


Asunto(s)
Bovinos/crecimiento & desarrollo , Bovinos/metabolismo , Somatomedinas/metabolismo , Animales , Femenino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Regiones Promotoras Genéticas , Isoformas de Proteínas , ARN Largo no Codificante/metabolismo
4.
BMC Genomics ; 19(1): 309, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29716547

RESUMEN

BACKGROUND: Divergent selection for meat and egg production in poultry has resulted in strains of birds differing widely in traits related to these products. Modern strains of meat birds can reach live weights of 2 kg in 35 d, while layer strains are now capable of producing more than 300 eggs per annum but grow slowly. In this study, RNA-Seq was used to investigate hepatic gene expression between three groups of birds with large differences in growth potential; meat bird, layer strain as well as an F1 layer x meat bird. The objective was to identify differentially expressed (DE) genes between all three strains to elucidate biological factors underpinning variations in growth performance. RESULTS: RNA-Seq analysis was carried out on total RNA extracted from the liver of meat bird (n = 6), F1 layer x meat bird cross (n = 6) and layer strain (n = 6), males. Differential expression of genes were considered significant at P < 0.05, and a false discovery rate of < 0.05, with any fold change considered. In total, 6278 genes were found to be DE with 5832 DE between meat birds and layers (19%), 2935 DE between meat birds and the cross (9.6%) and 493 DE between the cross and layers (1.6%). Comparisons between the three groups identified 155 significant DE genes. Gene ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the 155 DE genes showed the FoxO signalling pathway was most enriched (P = 0.001), including genes related to cell cycle regulation and insulin signalling. Significant GO terms included 'positive regulation of glucose import' and 'cellular response to oxidative stress', which is also consistent with FoxOs regulation of glucose metabolism. There were high correlations between FoxO pathway genes and bodyweight, as well as genes related to glycolysis and bodyweight. CONCLUSIONS: This study revealed large transcriptome differences between meat and layer birds. There was significant evidence implicating the FoxO signalling pathway (via cell cycle regulation and altered metabolism) as an active driver of growth variations in chicken. Functional analysis of the FoxO genes is required to understand how they regulate growth and egg production.


Asunto(s)
Pollos/crecimiento & desarrollo , Pollos/genética , Perfilación de la Expresión Génica , Hibridación Genética , Hígado/metabolismo , Carne , Animales , Fenotipo
5.
Artículo en Inglés | MEDLINE | ID: mdl-28883915

RESUMEN

BACKGROUND: The broiler industry has undergone intense genetic selection over the past 50 yr. resulting in improvements for growth and feed efficiency, however, significant variation remains for performance and growth traits. Production improvements have been coupled with unfavourable metabolic consequences, including immunological trade-offs for growth, and excess fat deposition. To determine whether interactions between fatty acid (FA) metabolism and innate immunity may be associated with performance variations commonly seen within commercial broiler flocks, total carcass lipid %, carcass and blood FA composition, as well as genes involved with FA metabolism, immunity and cellular stress were investigated in male birds of a broiler strain, layer strain and F1 layer × broiler cross at d 14 post hatch. Heterophil: lymphocyte ratios, relative organ weights and bodyweight data were also compared. RESULTS: Broiler bodyweight (n = 12) was four times that of layers (n = 12) by d 14 and had significantly higher carcass fat percentage compared to the cross (n = 6; P = 0.002) and layers (P = 0.017) which were not significantly different from each other (P = 0.523). The carcass and whole blood FA analysis revealed differences in the FA composition between the three groups indicating altered FA metabolism, despite all being raised on the same diet. Genes associated with FA synthesis and ß-oxidation were upregulated in the broilers compared to the layers indicating a net overall increase in FA metabolism, which may be driven by the larger relative liver size as a percentage of bodyweight in the broilers. Genes involved in innate immunity such as TLR2 and TLR4, as well as organelle stress indicators ERN1 and XBP1 were found to be non-significant, with the exception of high expression levels of XBP1 in layers compared to the cross and broilers. Additionally there was no difference in heterophil: lymphocytes between any of the birds. CONCLUSIONS: The results provide evidence that genetic selection may be associated with altered metabolic processes between broilers, layers and their F1 cross. Whilst there is no evidence of interactions between FA metabolism, innate immunity or cellular stress, further investigations at later time points as growth and fat deposition increase would provide useful information as to the effects of divergent selection on key metabolic and immunological processes.

6.
BMC Dev Biol ; 7: 95, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17697390

RESUMEN

BACKGROUND: The muscle fiber number and fiber composition of muscle is largely determined during prenatal development. In order to discover genes that are involved in determining adult muscle phenotypes, we studied the gene expression profile of developing fetal bovine longissimus muscle from animals with two different genetic backgrounds using a bovine cDNA microarray. Fetal longissimus muscle was sampled at 4 stages of myogenesis and muscle maturation: primary myogenesis (d 60), secondary myogenesis (d 135), as well as beginning (d 195) and final stages (birth) of functional differentiation of muscle fibers. All fetuses and newborns (total n = 24) were from Hereford dams and crossed with either Wagyu (high intramuscular fat) or Piedmontese (GDF8 mutant) sires, genotypes that vary markedly in muscle and compositional characteristics later in postnatal life. RESULTS: We obtained expression profiles of three individuals for each time point and genotype to allow comparisons across time and between sire breeds. Quantitative reverse transcription-PCR analysis of RNA from developing longissimus muscle was able to validate the differential expression patterns observed for a selection of differentially expressed genes, with one exception. We detected large-scale changes in temporal gene expression between the four developmental stages in genes coding for extracellular matrix and for muscle fiber structural and metabolic proteins. FSTL1 and IGFBP5 were two genes implicated in growth and differentiation that showed developmentally regulated expression levels in fetal muscle. An abundantly expressed gene with no functional annotation was found to be developmentally regulated in the same manner as muscle structural proteins. We also observed differences in gene expression profiles between the two different sire breeds. Wagyu-sired calves showed higher expression of fatty acid binding protein 5 (FABP5) RNA at birth. The developing longissimus muscle of fetuses carrying the Piedmontese mutation shows an emphasis on glycolytic muscle biochemistry and a large-scale up-regulation of the translational machinery at birth. We also document evidence for timing differences in differentiation events between the two breeds. CONCLUSION: Taken together, these findings provide a detailed description of molecular events accompanying skeletal muscle differentiation in the bovine, as well as gene expression differences that may underpin the phenotype differences between the two breeds. In addition, this study has highlighted a non-coding RNA, which is abundantly expressed and developmentally regulated in bovine fetal muscle.


Asunto(s)
Bovinos/embriología , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Proteínas Musculares/genética , Músculo Esquelético/embriología , Animales , Bovinos/genética , Cruzamientos Genéticos , ADN Complementario , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
7.
Pigment Cell Res ; 16(6): 693-7, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14629728

RESUMEN

Dominant black pigment synthesis in sheep is caused by alterations of the melanocortin-1 receptor (MC1-R) coding sequence. Using five bovine microsatellite markers we have mapped the sheep MC1-R gene to chromosome 14, corresponding to the location in other mammalian species. The existence of two independent mutations, both causing an amino acid substitution, in distantly related breeds of sheep, support the hypothesis that the observed black pigment synthesis is caused by a mutual effect of the two mutations. As similar mutations are found separately at both locations in dominant black variants of other animal species, it is also possible that any of the two mutations could be sufficient for a partial pigment switch.


Asunto(s)
Color del Cabello/genética , Repeticiones de Microsatélite/genética , Mutación , Receptor de Melanocortina Tipo 1/genética , Oveja Doméstica/genética , Animales , Secuencia de Bases , Bovinos , Mapeo Cromosómico , Datos de Secuencia Molecular , Linaje
8.
Biol Reprod ; 68(1): 45-50, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12493694

RESUMEN

The purpose of this study was to determine if the nutrition of the oocyte donor ewe influenced the success of somatic cell cloning. Merino ewes were fed at either a high- or a low-nutrition level for 3-5 mo before superovulation treatments. Freshly ovulated oocytes were enucleated and fused with serum-starved adult granulosa cells, and resulting reconstructed embryos were cultured for 6 days in modified synthetic oviduct fluid. Embryo cleavage and development to blastocysts were recorded, and good-quality embryos were transferred to synchronized recipient ewes either fresh or, on a few occasions, after vitrification. Pregnancies were monitored by ultrasonography from Day 40 of pregnancy, and offspring were delivered by either cesarean section or vaginal delivery. No differences occurred in the numbers of follicles aspirated, of oocytes recovered, or of oocytes utilizable for cloning between the high and low groups. Neither were there treatment differences in development to the blastocyst stage. However, transfer of embryos from the high group led to significantly more pregnancies and implanted fetuses. Also, more of the established pregnancies from the high group were carried to term, although this difference was not statistically significant. Lamb mortality was high, with half the live-born perishing soon after birth and more succumbing to various infections within days or weeks of birth, but no clear association between the offspring fate and the treatment group could be established. These results suggest that more research into the effect of nutrition on oocyte quality and its subsequent effect on cloning is warranted.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Clonación de Organismos/veterinaria , Técnicas de Transferencia Nuclear , Oocitos , Animales , Animales Recién Nacidos , Clonación de Organismos/métodos , Transferencia de Embrión/veterinaria , Femenino , Repeticiones de Microsatélite , Donación de Oocito/veterinaria , Embarazo , Resultado del Embarazo/veterinaria , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...