Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 104(44): 17518-23, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17956977

RESUMEN

The signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)), likely functions in multiple signaling pathways. Here, we report the characterization of a mouse mutant lacking Vac14, a regulator of PI(3,5)P(2) synthesis. The mutant mice exhibit massive neurodegeneration, particularly in the midbrain and in peripheral sensory neurons. Cell bodies of affected neurons are vacuolated, and apparently empty spaces are present in areas where neurons should be present. Similar vacuoles are found in cultured neurons and fibroblasts. Selective membrane trafficking pathways, especially endosome-to-TGN retrograde trafficking, are defective. This report, along with a recent report on a mouse with a null mutation in Fig4, presents the unexpected finding that the housekeeping lipid, PI(3,5)P(2), is critical for the survival of neural cells.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Degeneración Nerviosa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal , Animales , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Transporte de Proteínas
2.
Traffic ; 7(10): 1368-77, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16824055

RESUMEN

Vac8p, an armadillo (ARM) repeat protein, is required for multiple vacuolar processes. It functions in vacuole inheritance, cytoplasm-to-vacuole protein targeting pathway, formation of the nucleus-vacuole junction and vacuole-vacuole fusion. These functions each utilize a distinct Vac8p-binding partner. Here, we report an additional Vac8p function: caffeine resistance. We show that Vac8p function in caffeine resistance is mediated via a newly identified Vac8p-binding partner, Tco89p. The interaction between Vac8p and each binding partner requires an overlapping subset of Vac8p ARM repeats. Moreover, these partners can compete with each other for access to Vac8p. Furthermore, Vac8p is enriched in three separate subdomains on the vacuole, each with a unique binding partner dedicated to a different vacuolar function. These findings suggest that a major role of Vac8p is to spatially separate multiple functions thereby enabling vacuole inheritance to occur concurrently with other vacuolar processes.


Asunto(s)
Cafeína/farmacología , Farmacorresistencia Fúngica/fisiología , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Vacuolas/fisiología , Membrana Celular/metabolismo , Lipoproteínas/genética , Proteínas de la Membrana/genética , Sistemas de Lectura Abierta , Inhibidores de Fosfodiesterasa/farmacología , Unión Proteica , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , Vacuolas/ultraestructura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Eukaryot Cell ; 5(4): 723-31, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16607019

RESUMEN

Phosphoinositide lipids regulate complex events via the recruitment of proteins to a specialized region of the membrane at a specific time. Precise control of both the synthesis and turnover of phosphoinositide lipids is integral to membrane trafficking, signal transduction, and cytoskeletal rearrangements. Little is known about the acute regulation of the levels of these signaling lipids. When Saccharomyces cerevisiae cells are treated with hyperosmotic medium the levels of phosphatidylinositol 3,5-bisphosphate (PI3,5P(2)) increase 20-fold. Here we show that this 20-fold increase is rapid and occurs within 5 min. Surprisingly, these elevated levels are transient. Fifteen minutes following hyperosmotic shock they decrease at a rapid rate, even though the cells remain in hyperosmotic medium. In parallel with the rapid increase in the levels of PI3,5P(2), vacuole volume decreases rapidly. Furthermore, concomitant with a return to basal levels of PI3,5P(2) vacuole volume is restored. We show that Fig 4p, consistent with its proposed role as a PI3,5P(2) 5-phosphatase, is required in vivo for this rapid return to basal levels of PI3,5P(2). Surprisingly, we find that Fig 4p is also required for the hyperosmotic shock-induced increase in PI3,5P(2) levels. These findings demonstrate that following hyperosmotic shock, large, transient changes occur in the levels of PI3,5P(2) and further suggest that Fig 4p is important in regulating both the acute rise and subsequent fall in PI3,5P(2) levels.


Asunto(s)
Flavoproteínas/fisiología , Presión Osmótica , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Membrana Celular/química , Monoéster Fosfórico Hidrolasas , Proteínas de Saccharomyces cerevisiae/análisis , Factores de Tiempo , Regulación hacia Arriba
4.
J Biol Chem ; 280(33): 29689-98, 2005 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-15886204

RESUMEN

Despite their enormous potential as novel research tools and therapeutic agents, artificial transcription factors (ATFs) that up-regulate transcription robustly in vivo remain elusive. In investigating an ATF that does function exceptionally well in vivo, we uncovered an unexpected relationship between transcription function and a binding interaction between the activation domain and an adjacent region of the DNA binding domain. Disruption of this interaction leads to complete loss of function in vivo, even though the activation domain is still able to bind to its target in the transcriptional machinery. We propose that this interaction parallels those between natural activation domains and their regulatory proteins, concealing the activation domain from solvent and the cellular milieu until it binds to its transcriptional machinery target. Inclusion of this property in the future design of ATFs should enhance their efficacy in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN , Datos de Secuencia Molecular , Transactivadores/química
5.
J Cell Biol ; 160(6): 887-97, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12642614

RESUMEN

Class V myosins are widely distributed among diverse organisms and move cargo along actin filaments. Some myosin Vs move multiple types of cargo, where the timing of movement and the destinations of selected cargoes are unique. Here, we report the discovery of an organelle-specific myosin V receptor. Vac17p, a novel protein, is a component of the vacuole-specific receptor for Myo2p, a Saccharomyces cerevisiae myosin V. Vac17p interacts with the Myo2p cargo-binding domain, but not with vacuole inheritance-defective myo2 mutants that have single amino acid changes within this region. Moreover, a region of the Myo2p tail required specifically for secretory vesicle transport is neither required for vacuole inheritance nor for Vac17p-Myo2p interactions. Vac17p is localized on the vacuole membrane, and vacuole-associated Myo2p increases in proportion with an increase in Vac17p. Furthermore, Vac17p is not required for movement of other cargo moved by Myo2p. These findings demonstrate that Vac17p is a component of a vacuole-specific receptor for Myo2p. Organelle-specific receptors such as Vac17p provide a mechanism whereby a single type of myosin V can move diverse cargoes to distinct destinations at different times.


Asunto(s)
Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Orgánulos/metabolismo , Transporte de Proteínas/fisiología , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular , Citoesqueleto de Actina/metabolismo , Células Cultivadas , Regulación Fúngica de la Expresión Génica/fisiología , Membranas Intracelulares/metabolismo , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Orgánulos/ultraestructura , Estructura Terciaria de Proteína/fisiología , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretoras/metabolismo , Vacuolas/ultraestructura
6.
Nature ; 422(6927): 87-92, 2003 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-12594460

RESUMEN

Normal cellular function requires that organelles be positioned in specific locations. The direction in which molecular motors move organelles is based in part on the polarity of microtubules and actin filaments. However, this alone does not determine the intracellular destination of organelles. For example, the yeast class V myosin, Myo2p, moves several organelles to distinct locations during the cell cycle. Thus the movement of each type of Myo2p cargo must be regulated uniquely. Here we report a regulatory mechanism that specifically provides directionality to vacuole movement. The vacuole-specific Myo2p receptor, Vac17p, has a key function in this process. Vac17p binds simultaneously to Myo2p and to Vac8p, a vacuolar membrane protein. The transport complex, Myo2p-Vac17p-Vac8p, moves the vacuole to the bud, and is then disrupted through the degradation of Vac17p. The vacuole is ultimately deposited near the centre of the bud. Removal of a PEST sequence (a potential signal for rapid protein degradation) within Vac17p causes its stabilization and the subsequent 'backward' movement of vacuoles, which mis-targets them to the neck between the mother cell and the bud. Thus the regulated disruption of this transport complex places the vacuole in its proper location. This may be a general mechanism whereby organelles are deposited at their terminal destination.


Asunto(s)
Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular , Secuencias de Aminoácidos , Ciclo Celular , Tamaño de la Célula , Lipoproteínas/genética , Lipoproteínas/metabolismo , Sustancias Macromoleculares , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Unión Proteica , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
J Cell Biol ; 156(6): 1015-28, 2002 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-11889142

RESUMEN

Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P(2)) was first identified as a non-abundant phospholipid whose levels increase in response to osmotic stress. In yeast, Fab1p catalyzes formation of PtdIns(3,5)P(2) via phosphorylation of PtdIns(3)P. We have identified Vac14p, a novel vacuolar protein that regulates PtdIns(3,5)P(2) synthesis by modulating Fab1p activity in both the absence and presence of osmotic stress. We find that PtdIns(3)P levels are also elevated in response to osmotic stress, yet, only the elevation of PtdIns(3,5)P(2) levels are regulated by Vac14p. Under basal conditions the levels of PtdIns(3,5)P(2) are 18-28-fold lower than the levels of PtdIns(3)P, PtdIns(4)P, and PtdIns(4,5)P(2). After a 10 min exposure to hyperosmotic stress the levels of PtdIns(3,5)P(2) rise 20-fold, bringing it to a cellular concentration that is similar to the other phosphoinositides. This suggests that PtdIns(3,5)P(2) plays a major role in osmotic stress, perhaps via regulation of vacuolar volume. In fact, during hyperosmotic stress the vacuole morphology of wild-type cells changes dramatically, to smaller, more highly fragmented vacuoles, whereas mutants unable to synthesize PtdIns(3,5)P(2) continue to maintain a single large vacuole. These findings demonstrate that Vac14p regulates the levels of PtdIns(3,5)P(2) and provide insight into why PtdIns(3,5)P(2) levels rise in response to osmotic stress.


Asunto(s)
Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación hacia Arriba/fisiología , Vacuolas/metabolismo , Levaduras/metabolismo , Secuencia de Bases/genética , Deleción Cromosómica , Regulación Fúngica de la Expresión Génica/fisiología , Membranas Intracelulares/ultraestructura , Datos de Secuencia Molecular , Mutación/genética , Presión Osmótica , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Homología de Secuencia de Aminoácido , Vacuolas/ultraestructura , Levaduras/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA