Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 3280, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286573

RESUMEN

Venous thromboembolism (VTE) is a common, multi-causal disease with potentially serious short- and long-term complications. In clinical practice, there is a need for improved plasma biomarker-based tools for VTE diagnosis and risk prediction. Here we show, using proteomics profiling to screen plasma from patients with suspected acute VTE, and several case-control studies for VTE, how Complement Factor H Related 5 protein (CFHR5), a regulator of the alternative pathway of complement activation, is a VTE-associated plasma biomarker. In plasma, higher CFHR5 levels are associated with increased thrombin generation potential and recombinant CFHR5 enhanced platelet activation in vitro. GWAS analysis of ~52,000 participants identifies six loci associated with CFHR5 plasma levels, but Mendelian randomization do not demonstrate causality between CFHR5 and VTE. Our results indicate an important role for the regulation of the alternative pathway of complement activation in VTE and that CFHR5 represents a potential diagnostic and/or risk predictive plasma biomarker.


Asunto(s)
Tromboembolia Venosa , Humanos , Biomarcadores , Activación de Complemento , Factor H de Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Factor V , Tromboembolia Venosa/genética
3.
Nat Commun ; 12(1): 5596, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552086

RESUMEN

Contact activation refers to the process of surface-induced activation of factor XII (FXII), which initiates blood coagulation and is captured by the activated partial thromboplastin time (aPTT) assay. Here, we show the mechanism and diagnostic implications of FXII contact activation. Screening of recombinant FXII mutants identified a continuous stretch of residues Gln317-Ser339 that was essential for FXII surface binding and activation, thrombin generation and coagulation. Peptides spanning these 23 residues competed with surface-induced FXII activation. Although FXII mutants lacking residues Gln317-Ser339 were susceptible to activation by plasmin and plasma kallikrein, they were ineffective in supporting arterial and venous thrombus formation in mice. Antibodies raised against the Gln317-Ser339 region induced FXII activation and triggered controllable contact activation in solution leading to thrombin generation by the intrinsic pathway of coagulation. The antibody-activated aPTT allows for standardization of particulate aPTT reagents and for sensitive monitoring of coagulation factors VIII, IX, XI.


Asunto(s)
Coagulación Sanguínea , Factor XII/química , Factor XII/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Factor XII/genética , Factor XII/inmunología , Factor XIIa/metabolismo , Ratones , Mutación , Tiempo de Tromboplastina Parcial/normas , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Péptidos/metabolismo , Trombosis/diagnóstico , Trombosis/genética , Trombosis/metabolismo
4.
Nat Microbiol ; 4(12): 2442-2455, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31548687

RESUMEN

Severe infectious diseases are often characterized by an overwhelming and unbalanced systemic immune response to microbial infections. Human antithrombin (hAT) is a crucial coagulation inhibitor with anti-inflammatory activities. Here we identify three hAT-binding proteins (CD13, CD300f and LRP-1) on human monocytes that are involved in blocking the activity of nuclear factor-κB. We found that the modulating effect is primarily restricted to the less abundant ß-isoform (hßAT) of hAT that lacks N-glycosylation at position 135. Individuals with a mutation at this position have increased production of hßAT and analysis of their blood, which was stimulated ex vivo with lipopolysaccharide, showed a decreased inflammatory response. Similar findings were recorded when heterozygotic mice expressing hAT or hßAT were challenged with lipopolysaccharide or infected with Escherichia coli bacteria. Our results finally demonstrate that in a lethal E. coli infection model, survival rates increased when mice were treated with hßAT one hour and five hours after infection. The treatment also resulted in a reduction of the inflammatory response and less severe organ damage.


Asunto(s)
Antitrombinas/química , Antitrombinas/inmunología , Infecciones Bacterianas/inmunología , Animales , Antitrombinas/sangre , Quimiocinas , Citocinas , Modelos Animales de Enfermedad , Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Humanos , Lipopolisacáridos/efectos adversos , Masculino , Ratones , Ratones Transgénicos , Monocitos , Mutación , FN-kappa B , Isoformas de Proteínas , Células RAW 264.7
5.
J Clin Invest ; 128(3): 944-959, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29376892

RESUMEN

Coagulation factor XII (FXII) deficiency is associated with decreased neutrophil migration, but the mechanisms remain uncharacterized. Here, we examine how FXII contributes to the inflammatory response. In 2 models of sterile inflammation, FXII-deficient mice (F12-/-) had fewer neutrophils recruited than WT mice. We discovered that neutrophils produced a pool of FXII that is functionally distinct from hepatic-derived FXII and contributes to neutrophil trafficking at sites of inflammation. FXII signals in neutrophils through urokinase plasminogen activator receptor-mediated (uPAR-mediated) Akt2 phosphorylation at S474 (pAktS474). Downstream of pAkt2S474, FXII stimulation of neutrophils upregulated surface expression of αMß2 integrin, increased intracellular calcium, and promoted extracellular DNA release. The sum of these activities contributed to neutrophil cell adhesion, migration, and release of neutrophil extracellular traps in a process called NETosis. Decreased neutrophil signaling in F12-/- mice resulted in less inflammation and faster wound healing. Targeting hepatic F12 with siRNA did not affect neutrophil migration, whereas WT BM transplanted into F12-/- hosts was sufficient to correct the neutrophil migration defect in F12-/- mice and restore wound inflammation. Importantly, these activities were a zymogen FXII function and independent of FXIIa and contact activation, highlighting that FXII has a sophisticated role in vivo that has not been previously appreciated.


Asunto(s)
Factor XII/metabolismo , Neutrófilos/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Cicatrización de Heridas , Animales , Calcio/metabolismo , Adhesión Celular , Movimiento Celular , Células Cultivadas , Trampas Extracelulares , Femenino , Humanos , Inflamación , Leucocitos/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peritonitis/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal
6.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2118-2127, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28743596

RESUMEN

The contact system is a potent procoagulant and proinflammatory plasma protease cascade that is initiated by binding ("contact")-induced, auto-activation of factor XII zymogen. Formed active serine protease FXIIa then cleaves plasma prekallikrein to kallikrein that in turn liberates the mediator bradykinin from its precursor high molecular weight kininogen. Bradykinin induces inflammation with implications for host defense and innate immunity. FXIIa also triggers the intrinsic pathway of coagulation that has been shown to critically contribute to thrombosis. Vice versa, FXII deficiency impairs thrombosis in animal models without inducing abnormal excessive bleeding. Recent work has established the FXIIa-driven contact system as promising target for anticoagulant and anti-inflammatory drugs. This review focuses on the biochemistry of the contact system, its regulation by endogenous and exogenous inhibitors, and roles in disease states. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Asunto(s)
Coagulación Sanguínea/genética , Deficiencia del Factor XII/genética , Factor XIIa/genética , Inflamación/genética , Bradiquinina/genética , Deficiencia del Factor XII/sangre , Deficiencia del Factor XII/patología , Humanos , Inmunidad Innata/genética , Inflamación/sangre , Inflamación/patología , Calicreínas/genética , Trombosis/sangre , Trombosis/genética , Trombosis/patología
7.
Semin Thromb Hemost ; 43(8): 814-826, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28346966

RESUMEN

Contact activation is the surface-induced conversion of factor XII (FXII) zymogen to the serine protease FXIIa. Blood-circulating FXII binds to negatively charged surfaces and this contact to surfaces triggers a conformational change in the zymogen inducing autoactivation. Several surfaces that have the capacity for initiating FXII contact activation have been identified, including misfolded protein aggregates, collagen, nucleic acids, and platelet and microbial polyphosphate. Activated FXII initiates the proinflammatory kallikrein-kinin system and the intrinsic coagulation pathway, leading to formation of bradykinin and thrombin, respectively. FXII contact activation is well characterized in vitro and provides the mechanistic basis for the diagnostic clotting assay, activated partial thromboplastin time. However, only in the past decade has the critical role of FXII contact activation in pathological thrombosis been appreciated. While defective FXII contact activation provides thromboprotection, excess activation underlies the swelling disorder hereditary angioedema type III. This review provides an overview of the molecular basis of FXII contact activation and FXII contact activation-associated disease states.


Asunto(s)
Coagulación Sanguínea , Bradiquinina/metabolismo , Factor XIIa/metabolismo , Angioedema Hereditario Tipo III/metabolismo , Trombina/metabolismo , Animales , Bradiquinina/genética , Activación Enzimática , Factor XIIa/genética , Angioedema Hereditario Tipo III/genética , Humanos , Trombina/genética
8.
Microb Biotechnol ; 10(3): 657-665, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28168836

RESUMEN

Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Sanguíneas/metabolismo , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Animales , Ligandos , Unión Proteica , Staphylococcus aureus/patogenicidad
9.
PLoS Negl Trop Dis ; 10(5): e0004713, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27167223

RESUMEN

Leptospirosis is a worldwide spread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. In severe infections, hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. These complications often occur when the host response is controlled and/or modulated by the bacterial pathogen. In the present investigation, we aimed to analyze the modulation of the hemostatic and inflammatory host responses by the bacterial pathogen Leptospira. The effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation were investigated by means of altered clotting times, assembly and activation of contact system and induction of tissue factor. We show that both extrinsic and intrinsic coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that the pro-inflammatory mediator bradykinin is released following contact activation at the bacterial surface and that pro-coagulant microvesicles are shed from monocytes in response to infection. Also, we show that human leptospirosis patients present higher levels of circulating pro-coagulant microvesicles than healthy individuals. Here we show that both pathways of the coagulation system are modulated by leptospires, possibly leading to altered hemostatic and inflammatory responses during the disease. Our results contribute to the understanding of the leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments for the severe manifestations of the disease.


Asunto(s)
Hemostasis , Inflamación/etiología , Leptospirosis/etiología , Bradiquinina/metabolismo , Humanos , Quininógenos/metabolismo , Tromboplastina
10.
Thromb Haemost ; 114(4): 717-26, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25994766

RESUMEN

Activation of thrombin is a critical determinant in many physiological and pathological processes including haemostasis and inflammation. Under physiological conditions many of these functions are involved in wound healing or eradication of an invading pathogen. However, when activated systemically, thrombin can contribute to severe and life-threatening conditions by causing complications such as multiple multi-organ failure and disseminated intravascular coagulation. In the present study we investigated how the activity of thrombin is modulated when it is bound to the surface of Streptococcus pyogenes. Our data show that S. pyogenes bacteria become covered with a proteinaceous layer when incubated with human plasma, and that thrombin is a constituent of this layer. Though the coagulation factor is found attached to the bacteria with a functional active site, thrombin has lost its capacity to interact with its natural substrates and inhibitors. Thus, the interaction of bacteria with human plasma renders thrombin completely inoperable at the streptococcal surface. This could represent a host defense mechanism to avoid systemic activation of coagulation which could be otherwise induced when bacteria enter the circulation and cause systemic infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coagulación Sanguínea , Infecciones Estreptocócicas/sangre , Streptococcus pyogenes/metabolismo , Trombina/metabolismo , Antitrombinas/farmacología , Coagulación Sanguínea/efectos de los fármacos , Carboxipeptidasa B2/metabolismo , Activación Enzimática , Fibrinógeno/metabolismo , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Proteína C/metabolismo , Streptococcus pyogenes/patogenicidad , Trombina/antagonistas & inhibidores
11.
Microbiology (Reading) ; 161(Pt 3): 621-627, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25533444

RESUMEN

Recent work has shown that coagulation and innate immunity are tightly interwoven host responses that help eradicate an invading pathogen. Some bacterial species, including Staphylococcus aureus, secrete pro-coagulant factors that, in turn, can modulate these immune reactions. Such mechanisms may not only protect the micro-organism from a lethal attack, but also promote bacterial proliferation and the establishment of infection. Our data showed that coagulase-positive S. aureus bacteria promoted clotting of plasma which was not seen when a coagulase-deficient mutant strain was used. Furthermore, in vitro studies showed that this ability constituted a mechanism that supported the aggregation, survival and persistence of the micro-organism within the fibrin network. These findings were also confirmed when agglutination and persistence of coagulase-positive S. aureus bacteria at the local focus of infection were studied in a subcutaneous murine infection model. In contrast, the coagulase-deficient S. aureus strain which was not able to induce clotting failed to aggregate and to persist in vivo. In conclusion, our data suggested that coagulase-positive S. aureus have evolved mechanisms that prevent their elimination within a fibrin clot.


Asunto(s)
Coagulación Sanguínea , Fibrina/metabolismo , Evasión Inmune , Infecciones Estafilocócicas/sangre , Staphylococcus aureus/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coagulasa/genética , Coagulasa/metabolismo , Fibrina/genética , Humanos , Ratones , Ratones Endogámicos CBA , Viabilidad Microbiana , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
12.
Int J Biochem Cell Biol ; 45(8): 1701-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23707200

RESUMEN

Human cysteine cathepsins (Cats) are implicated in lung injuries and tissue remodeling and have recently emerged as important players in pulmonary inflammations. The proteolytic activities of Cat B, L, K, S and H are dramatically increased in the sputum of patients with cystic fibrosis (CF), suggesting a possible involvement in the CF pathophysiology. We found that pulmonary surfactant protein A (SP-A) that participates to innate host defense is extensively degraded in CF expectorations. Breakdown of SP-A was markedly decreased in CF sputum by E-64 and Mu-Leu-Hph-VSPh, a Cat S inhibitor. Cat S cleaved efficiently and specifically SP-A within critical residues of the solvent-exposed loop of its carbohydrate recognition (C-type lectin) domain that allows binding to pathogens. Cat S decreased aggregation properties of SP-A (self-aggregation, aggregation of phospholipid vesicles and rough LPS). Moreover cleavage of SP-A by Cat S reduced binding to yeast mannan and impaired agglutination of Escherichia coli and Pseudomonas aeruginosa, a foremost detrimental pathogen colonizing the lungs of CF patients. Besides human neutrophil serine proteases and bacterial proteases, we propose that Cat S may participate in the pathophysiology of CF by weakening the antibacterial activity of SP-A. More broadly, present results provide further indication that Cat S, along with Cats B and L, could display immuno-modulatory functions by inactivating key proteins involved in the innate immunity defense.


Asunto(s)
Antibacterianos/metabolismo , Catepsinas/metabolismo , Pulmón/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Aglutinación , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Bovinos , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Escherichia coli/metabolismo , Humanos , Hidrólisis , Pulmón/patología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteolisis , Pseudomonas aeruginosa/metabolismo , Proteína A Asociada a Surfactante Pulmonar/química , Esputo/enzimología , Especificidad por Sustrato
13.
PLoS One ; 6(9): e25577, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980493

RESUMEN

Cysteine cathepsins have emerged as new players in inflammatory lung disorders. Their activities are dramatically increased in the sputum of cystic fibrosis (CF) patients, suggesting that they are involved in the pathophysiology of CF. We have characterized the cathepsins in CF expectorations and evaluated their use as markers of colonization by Pseudomonas aeruginosa. The concentrations of active cathepsins B, H, K, L and S were the same in P. aeruginosa-positive (19 Ps+) and P. aeruginosa-negative (6 Ps-) samples, unlike those of human neutrophil elastase. Also the cathepsin inhibitory potential and the cathepsins/cathepsin inhibitors imbalance remained unchanged and similar (∼2-fold) in the Ps+ and Ps- groups (p<0.001), which correlated with the breakdown of their circulating cystatin-like inhibitors (kininogens). Procathepsins, which may be activated autocatalytically, are a potential proteolytic reservoir. Immunoblotting and active-site labeling identified the double-chain cathepsin B, the major cathepsin in CF sputum, as the main molecular form in both Ps+ and Ps- samples, despite the possible release of the ∼31 kDa single-chain form from procathepsin B by sputum elastase. Thus, the hydrolytic activity of cysteine cathepsins was not correlated with bacterial colonization, indicating that cathepsins, unlike human neutrophil elastase, are not suitable markers of P. aeruginosa infection.


Asunto(s)
Catepsinas/metabolismo , Cisteína , Fibrosis Quística/enzimología , Fibrosis Quística/microbiología , Infecciones por Pseudomonas/enzimología , Pseudomonas aeruginosa/patogenicidad , Biomarcadores/química , Biomarcadores/metabolismo , Catepsinas/química , Cistatinas/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Fibrosis Quística/metabolismo , Humanos , Cinética , Quininógenos/metabolismo , Infecciones por Pseudomonas/metabolismo , Esputo/metabolismo
14.
Biochimie ; 92(11): 1568-79, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20346387

RESUMEN

Two kininogens are found in mammalian sera: HK (high molecular weight kininogen) and LK (low molecular weight kininogen) with the exception of the rat which encompasses a third kininogen, T-Kininogen (TK). Kininogens are multifunctional glycosylated molecules related to cystatins (clan IH, family I25). They harbor three cystatin domains but only two of them are tight-binding inhibitors of cysteine cathepsins. HK and LK, but not TK, are precursors of potent peptide hormones, the kinins, which are released proteolytically by tissue and plasma kallikreins. Besides these classical features novel functions of kininogens have been recently discovered; they are described in the second part of this review. HKa, which corresponds to the kinin-free two-chain HK and its isolated domain D5 (kininostatin), possesses angiostatic and pro-apoptotic properties, inhibits the proliferation of endothelial cells and participates in the regulation of angiogenesis. Moreover, some HK-derived peptides display potent and broad-spectrum microbicidal properties against both Gram-positive and Gram-negative bacteria, and thus may offer a promising alternative to conventional antibiotic therapy. Of seminal interest, a kininogen-derived peptide inhibits activation of the contact phase system of coagulation and protects mice with invasive Streptococcus pyogenes infection from pulmonary lesions. On the other hand, TK is a biomarker of aging at the end of lifespan of elderly rats. However, although TK has been initially identified as an acute phase reactant, and earlier known as alpha-l-acute phase globulin, the increase of TK in liver and plasma is not known to relate to any inflammatory event during the senescence process.


Asunto(s)
Inhibidores de Cisteína Proteinasa/metabolismo , Quininógenos/metabolismo , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Inhibidores de Cisteína Proteinasa/química , Humanos , Quininógenos/química , Datos de Secuencia Molecular , Neovascularización Patológica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...