Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 11: 1141097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457240

RESUMEN

Introduction: Over a third of the communities (39%) in the Central Valley of California, a richly diverse and important agricultural region, are classified as disadvantaged-with inadequate access to healthcare, lower socio-economic status, and higher exposure to air and water pollution. The majority of racial and ethnic minorities are also at higher risk of COVID-19 infection, hospitalization, and death according to the Centers for Disease Control and Prevention. Healthy Central Valley Together established a wastewater-based disease surveillance (WDS) program that aims to achieve greater health equity in the region through partnership with Central Valley communities and the Sewer Coronavirus Alert Network. WDS offers a cost-effective strategy to monitor trends in SARS-CoV-2 community infection rates. Methods: In this study, we evaluated correlations between public health and wastewater data (represented as SARS-CoV-2 target gene copies normalized by pepper mild mottle virus target gene copies) collected for three Central Valley communities over two periods of COVID-19 infection waves between October 2021 and September 2022. Public health data included clinical case counts at county and sewershed scales as well as COVID-19 hospitalization and intensive care unit admissions. Lag-adjusted hospitalization:wastewater ratios were also evaluated as a retrospective metric of disease severity and corollary to hospitalization:case ratios. Results: Consistent with other studies, strong correlations were found between wastewater and public health data. However, a significant reduction in case:wastewater ratios was observed for all three communities from the first to the second wave of infections, decreasing from an average of 4.7 ± 1.4 over the first infection wave to 0.8 ± 0.4 over the second. Discussion: The decline in case:wastewater ratios was likely due to reduced clinical testing availability and test seeking behavior, highlighting how WDS can fill data gaps associated with under-reporting of cases. Overall, the hospitalization:wastewater ratios remained more stable through the two waves of infections, averaging 0.5 ± 0.3 and 0.3 ± 0.4 over the first and second waves, respectively.


Asunto(s)
COVID-19 , Equidad en Salud , Estados Unidos , Humanos , Aguas Residuales , Estudios Retrospectivos , COVID-19/epidemiología , SARS-CoV-2 , Hospitalización , California/epidemiología
2.
FEMS Microbes ; 4: xtad003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333436

RESUMEN

A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the "COVIDPoops19" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.

3.
Sci Data ; 10(1): 396, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349355

RESUMEN

We measured concentrations of SARS-CoV-2, influenza A and B virus, respiratory syncytial virus (RSV), mpox virus, human metapneumovirus, norovirus GII, and pepper mild mottle virus nucleic acids in wastewater solids at twelve wastewater treatment plants in Central California, USA. Measurements were made daily for up to two years, depending on the wastewater treatment plant. Measurements were made using digital droplet (reverse-transcription-) polymerase chain reaction (RT-PCR) following best practices for making environmental molecular biology measurements. These data can be used to better understand disease occurrence in communities contributing to the wastewater.


Asunto(s)
Metapneumovirus , ARN Viral , Virus Sincitial Respiratorio Humano , SARS-CoV-2 , Humanos , COVID-19 , Aguas Residuales
4.
J Water Health ; 21(5): 615-624, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37254909

RESUMEN

The COVID-19 pandemic has highlighted the benefits of wastewater surveillance to supplement clinical data. Numerous online information dashboards have been rapidly, and typically independently, developed to communicate environmental surveillance data to public health officials and the public. In this study, we review dashboards presenting SARS-CoV-2 wastewater data and propose a path toward harmonization and improved risk communication. A list of 127 dashboards representing 27 countries was compiled. The variability was high and encompassed aspects including the graphics used for data presentation (e.g., line/bar graphs, maps, and tables), log versus linear scale, and 96 separate ways of labeling SARS-CoV-2 wastewater concentrations. Globally, dashboard presentations also differed by region. Approximately half of the dashboards presented clinical case data, and 25% presented variant monitoring. Only 30% of dashboards provided downloadable source data. While any single dashboard is likely useful in its own context and locality, the high variation across dashboards at best prevents optimal use of wastewater surveillance data on a broader geographical scale and at worst could lead to risk communication issues and the potential for public health miscommunication. There is a great opportunity to improve scientific communication through the adoption of uniform data presentation conventions, standards, and best practices in this field.


Asunto(s)
COVID-19 , Comunicación en Salud , Humanos , Aguas Residuales , SARS-CoV-2 , Pandemias , COVID-19/epidemiología , Monitoreo Epidemiológico Basado en Aguas Residuales , Salud Ambiental
5.
Sci Total Environ ; 858(Pt 1): 159748, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306840

RESUMEN

Wastewater-based epidemiology (WBE) has gained increasing attention as a complementary tool to conventional surveillance methods with potential for significant resource and labour savings when used for public health monitoring. Using WBE datasets to train machine learning algorithms and develop predictive models may also facilitate early warnings for the spread of outbreaks. The challenges associated with using machine learning for the analysis of WBE datasets and timeseries forecasting of COVID-19 were explored by running Random Forest (RF) algorithms on WBE datasets across 108 sites in five regions: Scotland, Catalonia, Ohio, the Netherlands, and Switzerland. This method uses measurements of SARS-CoV-2 RNA fragment concentration in samples taken at the inlets of wastewater treatment plants, providing insight into the prevalence of infection in upstream wastewater catchment populations. RF's forecasting performance at each site was quantitatively evaluated by determining mean absolute percentage error (MAPE) values, which was used to highlight challenges affecting future implementations of RF for WBE forecasting efforts. Performance was generally poor using WBE datasets from Catalonia, Scotland, and Ohio with 'reasonable' or better forecasts constituting 0 %, 5 %, and 0 % of these regions' forecasts, respectively. RF's performance was much stronger with WBE data from the Netherlands and Switzerland, which provided 55 % and 45 % 'reasonable' or better forecasts respectively. Sampling frequency and training set size were identified as key factors contributing to accuracy, while inclusion of too many unnecessary variables (or e.g., flow data) was identified as a contributing factor to poor performance. The contribution of catchment population on forecast accuracy was more ambiguous. This study determined that the factors governing RF's forecast performance are complicated and interrelated, which presents challenges for further work in this space. A sufficiently accurate further iteration of the tool discussed within this study would provide significant but varying value for public health departments for monitoring future, or ongoing outbreaks, assisting the implementation of on-time health response measures.


Asunto(s)
COVID-19 , Monitoreo Epidemiológico Basado en Aguas Residuales , Humanos , Aguas Residuales , COVID-19/epidemiología , Factores de Tiempo , ARN Viral , SARS-CoV-2 , Aprendizaje Automático , Predicción
6.
Sci Total Environ ; 858(Pt 1): 159680, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306854

RESUMEN

Wastewater-based epidemiology (WBE) has been deployed broadly as an early warning tool for emerging COVID-19 outbreaks. WBE can inform targeted interventions and identify communities with high transmission, enabling quick and effective responses. As the wastewater (WW) becomes an increasingly important indicator for COVID-19 transmission, more robust methods and metrics are needed to guide public health decision-making. This research aimed to develop and implement a mathematical framework to infer incident cases of COVID-19 from SARS-CoV-2 levels measured in WW. We propose a classification scheme to assess the adequacy of model training periods based on clinical testing rates and assess the sensitivity of model predictions to training periods. A testing period is classified as adequate when the rate of change in testing is greater than the rate of change in cases. We present a Bayesian deconvolution and linear regression model to estimate COVID-19 cases from WW data. The effective reproductive number is estimated from reconstructed cases using WW. The proposed modeling framework was applied to three Northern California communities served by distinct WW treatment plants. The results showed that training periods with adequate testing are essential to provide accurate projections of COVID-19 incidence.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , Carga Viral , Incidencia , COVID-19/epidemiología , SARS-CoV-2 , Teorema de Bayes
7.
Curr Opin Environ Sci Health ; 27: 100348, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35399703

RESUMEN

Amid the 2019 coronavirus disease pandemic (COVID-19), the scientific community has a responsibility to provide accessible public health resources within their communities. Wastewater based epidemiology (WBE) has been used to monitor community spread of the pandemic. The goal of this review was to evaluate the need for an environmental justice approach for COVID-19 WBE starting with the state of California in the United States. Methods included a review of the peer-reviewed literature, government-provided data, and news stories. As of June 2021, there were twelve universities, nine public dashboards, and 48 of 384 wastewater treatment plants monitoring wastewater for SARS-CoV-2 within California. The majority of wastewater monitoring in California has been conducted in the urban areas of Coastal and Southern California (34/48), with a lack of monitoring in more rural areas of Central (10/48) and Northern California (4/48). Similar to the access to COVID-19 clinical testing and vaccinations, there is a disparity in access to wastewater testing which can often provide an early warning system to outbreaks. This research demonstrates the need for an environmental justice approach and equity considerations when determining locations for environmental monitoring.

8.
Artículo en Inglés | MEDLINE | ID: mdl-34567579

RESUMEN

SARS-CoV-2 RNA detection in wastewater is being rapidly developed and adopted as a public health monitoring tool worldwide. With wastewater surveillance programs being implemented across many different scales and by many different stakeholders, it is critical that data collected and shared are accompanied by an appropriate minimal amount of metainformation to enable meaningful interpretation and use of this new information source and intercomparison across datasets. While some databases are being developed for specific surveillance programs locally, regionally, nationally, and internationally, common globally-adopted data standards have not yet been established within the research community. Establishing such standards will require national and international consensus on what metainformation should accompany SARS-CoV-2 wastewater measurements. To establish a recommendation on minimum information to accompany reporting of SARS-CoV-2 occurrence in wastewater for the research community, the United States National Science Foundation (NSF) Research Coordination Network on Wastewater Surveillance for SARS-CoV-2 hosted a workshop in February 2021 with participants from academia, government agencies, private companies, wastewater utilities, public health laboratories, and research institutes. This report presents the primary two outcomes of the workshop: (i) a recommendation on the set of minimum meta-information that is needed to confidently interpret wastewater SARS-CoV-2 data, and (ii) insights from workshop discussions on how to improve standardization of data reporting.

9.
Sci Total Environ ; 801: 149618, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34418622

RESUMEN

Wastewater-based epidemiology/wastewater surveillance has been a topic of significant interest over the last year due to its application in SARS-CoV-2 surveillance to track prevalence of COVID-19 in communities. Although SARS-CoV-2 surveillance has been applied in more than 50 countries to date, the application of this surveillance has been largely focused on relatively affluent urban and peri-urban communities. As such, there is a knowledge gap regarding the implementation of reliable wastewater surveillance in small and rural communities for the purpose of tracking rates of incidence of COVID-19 and other pathogens or biomarkers. This study examines the relationships existing between SARS-CoV-2 viral signal from wastewater samples harvested from an upstream pumping station and from an access port at a downstream wastewater treatment lagoon with the community's COVID-19 rate of incidence (measured as percent test positivity) in a small, rural community in Canada. Real-time quantitative polymerase chain reaction (RT-qPCR) targeting the N1 and N2 genes of SARS-CoV-2 demonstrate that all 24-h composite samples harvested from the pumping station over a period of 5.5 weeks had strong viral signal, while all samples 24-h composite samples harvested from the lagoon over the same period were below the limit of quantification. RNA concentrations and integrity of samples harvested from the lagoon were both lower and more variable than from samples from the upstream pumping station collected on the same date, indicating a higher overall stability of SARS-CoV-2 RNA upstream of the lagoon. Additionally, measurements of PMMoV signal in wastewater allowed normalizing SARS-CoV-2 viral signal for fecal matter content, permitting the detection of actual changes in community prevalence with a high level of granularity. As a result, in sewered small and rural communities or low-income regions operating wastewater lagoons, samples for wastewater surveillance should be harvested from pumping stations or the sewershed as opposed to lagoons.


Asunto(s)
COVID-19 , Humanos , ARN Viral , Población Rural , SARS-CoV-2 , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
11.
Environ Eng Sci ; 38(5): 377-388, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34079209

RESUMEN

Environmental health hazards are known to disproportionately burden marginalized communities. Agriculture, wastewater, and industrial waste contaminate surface and groundwater, used for drinking, with nitrates. High nitrate concentrations in drinking water have been linked to methemoglobinemia and, recently, thyroid cancer. With a large proportion of the nation's agriculture grown in California, thyroid cancer linked to nitrate water contamination is of concern. This research entailed geographic and statistical analysis of water, nitrate, health, and disadvantaged communities (DACs) in California. DACs are Californian defined areas that experience a combination of hardships from socioeconomic, health, and environmental fields. Our analysis of the California Cancer Registry and California Water Board's well data shows statistically significant correlation (p < 0.05) between nitrate contamination (wells >5 and 10 ppm NO3-N per square mile and percentage of total wells) and thyroid cancer incidence. DACs had twice the rate of thyroid cancer compared with non-DACs, and higher numbers of nitrate-contaminated wells and hot spots compared with the state averages. Almost half (47%) of the Central Valley's area contained DACs and 27% of wells >10 ppm NO3-N contaminants. Our study provides a method for other states and countries to conduct preliminary geospatial analysis between water contamination and health with open data. Maps and analysis from this research can inform the public, advocacy groups, and policy leaders of health-related concerns in relation to nitrate water contamination and environmental justice in California. DACs should be provided cost-effective drinking water monitoring and treatment, and governments should incentivize nitrate loading reductions in agriculture, industry, and wastewater. Future research is recommended with more localized, private health data on thyroid cancer incidence.

13.
Environ Sci Technol ; 52(20): 11803-11812, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30199636

RESUMEN

There remains a large unmet need for sanitation access throughout the world that compromises both human and environmental health. Opportunities exist to employ sanitation systems that better utilize and recover scarce resources from excreta such as water, energy, and nutrients. However, technologies such as a composting latrine may require more maintenance and close handling of feces compared to other sanitation technologies. This study aims to evaluate how use of on-site composting latrine technology and other demographic characteristics are associated with users' perceptions of excreta for resource recovery. Field observations and interviews of composting latrine users ( N = 201) and 200 perceptions surveys were administered to composting and non-composting latrine users in Indigenous and Latino communities in Panama. Of the completed composting latrines, 78% were in use and 65% of these were used properly. Compost latrine design and operational factors identified to improve were: anal wash capability, desiccant supply, children usage, and clogging urine tubes. Demographic categories associated with positive perceptions toward resource recovery ( p < 0.05) were ethnicity (14 out of 16 total statements) and sanitation type (11) then community origin (7), occupation (5), education (4), age (3), and gender (1).


Asunto(s)
Compostaje , Cuartos de Baño , Niño , Heces , Humanos , Panamá , Saneamiento
14.
Sci Total Environ ; 576: 284-291, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27788443

RESUMEN

This study improves the global application of methods and analyses, especially Life Cycle Assessment (LCA), that properly incorporates environmental impacts of firewood and a social sustainability indicator (human energy) as tools for sustainable human development. Specifically shea butter production processes, common throughout sub-Saharan Africa and crucial to food security, environmental sustainability, and women's empowerment, are analyzed. Many economic activities in the world rely on firewood for energy and labor that aren't included in traditional LCAs. Human energy (entirely from women) contributed 25-100% of shea butter production processes (2000-6100kJ/kg of shea butter) and mechanized production processes had reduced human energy without considerably greater total energy. Firewood accounted for 94-100% of total embodied energy (103 and 172MJ/kg of shea butter for improved and traditional shea butter production processes respectively) and global warming potential and 18-100% of human toxicity of the production processes. Implementation of improved cookstoves modeled in this study could reduce: (1) global warming potential by 78% (from 18 to 4.1kg CO2 eq/kg and 11 to 2.4kg CO2 eq/kg of shea butter for the traditional and improved processes respectively), (2) the embodied energy of using firewood by 52% (from 170 to 82MJ/kg and 103 to 49MJ/kg for the traditional and improved processes respectively), and (3) human toxicity by 83% for the non-mechanized traditional and improved processes (from 0.041 to 0.0071 1,4 DB eq/kg and 0.025 to 0.0042 1,4 DB eq/kg respectively). In addition, this is the first study to compare Economic Input-Output Life Cycle Assessment (EIO-LCA) and process-based LCA in a developing country and evaluate five traditional and improved shea butter production processes over different impact categories. Overall, this study developed a framework to evaluate and improve processes for achievement of the United Nation's Sustainable Development Goals for 2030 particularly to obtain food security.


Asunto(s)
Conservación de los Recursos Naturales , Abastecimiento de Alimentos , Ácidos Oléicos , Aceites de Plantas , África Occidental , Calentamiento Global , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...