Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(9): 095002, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991181

RESUMEN

A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

2.
Phys Rev Lett ; 112(18): 185004, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856704

RESUMEN

An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ∼8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

3.
Phys Rev Lett ; 107(12): 125001, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-22026773

RESUMEN

A quasiperiodic Er oscillation at a frequency of <4 kHz, much lower than the geodesic-acoustic-mode frequency, with a modulation in edge turbulence preceding and following the low-to-high (L-H) confinement mode transition, has been observed for the first time in the EAST tokamak, using two toroidally separated reciprocating probes. Just prior to the L-H transition, the Er oscillation often evolves into intermittent negative Er spikes. The low-frequency Er oscillation, as well as the Er spikes, is strongly correlated with the turbulence-driven Reynolds stress, thus providing first evidence of the role of the zonal flows in the L-H transition at marginal input power. These new findings not only shed light on the underlying physics mechanism for the L-H transition, but also have significant implications for ITER operations close to the L-H transition threshold power.

4.
Phys Rev Lett ; 107(13): 135004, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-22026864

RESUMEN

New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

5.
Phys Rev Lett ; 106(12): 125002, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517319

RESUMEN

Magnetically confined plasmas in the high confinement regime are regularly subjected to relaxation oscillations, termed edge localized modes (ELMs), leading to large transport events. Present ELM theories rely on a combined effect of edge current and the edge pressure gradients which result in intermediate mode number (n≅10-15) structures (filaments) localized in the perpendicular plane and extended along the field lines. By detailed localized measurements of the magnetic field perturbation associated to type-I ELM filaments, it is shown that these filaments carry a substantial current.

6.
Phys Rev Lett ; 102(7): 075001, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19257678

RESUMEN

Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A significant inward momentum pinch, up to 20 m/s, has been found. Both results are consistent with gyrokinetic simulations. This evidence is complemented in plasmas with internal transport barriers.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 2): 015402, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15697650

RESUMEN

The turbulent transport of impurity or minority species, as for example tritium, is investigated in drift-Alfvén edge turbulence. The full effects of perpendicular and parallel convection are kept for the impurity species. The impurity density develops a granular structure with steep gradients and locally exceeds its initial values due to the compressibility of the flow. An approximate decomposition of the impurity flux into a diffusive part and an effective convective part (characterized by a pinch velocity) is performed and a net inward pinch effect is recovered. The pinch velocity is explained in terms of turbulent equipartition [Phys. Plasmas 2, 2874 (1995)] and is found to vary poloidally. An approximate relationship between pinch velocity and turbulent diffusion is suggested.

8.
Phys Rev Lett ; 92(16): 165003, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-15169239

RESUMEN

Two-dimensional fluid simulations of interchange turbulence for geometry and parameters relevant for the scrape-off layer of magnetized plasmas are presented. The computations, which have distinct plasma production and loss regions, reveal bursty ejection of particles and heat from the bulk plasma in the form of blobs. These structures propagate far into the scrape-off layer where they are dissipated due to transport along open magnetic field lines. From single-point recordings it is shown that the blobs have asymmetric conditional wave forms and lead to positively skewed and flattened probability distribution functions. The radial propagation velocity may reach one-tenth of the sound speed. These results are in excellent agreement with recent experimental measurements.

9.
Phys Rev Lett ; 86(25): 5711-4, 2001 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-11415339

RESUMEN

Experiments on spatiotemporal open-loop synchronization of drift wave turbulence in a magnetized cylindrical plasma are reported. The synchronization effect is modeled by a rotating current profile with prescribed mode structure. Numerical simulations of an extended Hasegawa-Wakatani model show good agreement with experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...