Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 3823, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882506

RESUMEN

Modern cutting edge technologies of chemical synthesis enable the production of unique nanostructures with excess energy and high reactivity. Uncontrolled use of such materials in the food industry and pharmacology entail a risk for the development of a nanotoxicity crisis. Using the methods of tensometry, mechanokinetic analysis, biochemical methods, and bioinformatics, the current study showed that chronic (for six months) intragastrical burdening of rats with aqueous nanocolloids (AN) ZnO and TiO2 caused violations of the pacemaker-dependent mechanisms of regulation of spontaneous and neurotransmitter-induced contractions of the gastrointestinal tract (GIT) smooth muscles (SMs), and transformed the contraction efficiency indices (AU, in Alexandria units). Under the same conditions, the fundamental principle of distribution of physiologically relevant differences in the numeric values of the mechanokinetic parameters of spontaneous SM contractions between different parts of GIT is violated, which can potentially cause its pathological changes. Using molecular docking, typical bonds in the interfaces of the interaction of these nanomaterials with myosin II, a component of the contractile apparatus of smooth muscle cells (SMC) were investigated. In this connection, the study addressed the question of possible competitive relations between ZnO and TiO2 nanoparticles and actin molecules for binding sites on the myosin II actin-interaction interface. In addition, using biochemical methods, it was shown that chronic long-term exposure to nanocolloids causes changes in the primary active ion transport systems of cell plasma membranes, the activity of marker liver enzymes and disrupts the blood plasma lipid profile, which indicates the hepatotoxic effect of these nanocolloids.


Asunto(s)
Actinas , Óxido de Zinc , Animales , Ratas , Simulación del Acoplamiento Molecular , Tracto Gastrointestinal , Proteínas del Citoesqueleto
2.
Nanoscale Res Lett ; 12(1): 129, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28235365

RESUMEN

Electronic scanning microscopy was used in the work to obtain the image and to identify the sizes of titanium dioxide (TiO2) nanoparticles 21 ± 5 nm. The qualitative and quantitative elemental analysis of the preparations of the caecum, antrum, myometrium, kidneys, and lungs of the rats, burdened with titanium dioxide, was also performed. It was established using the tenzometric method in the isometric mode that the accumulation of titanium dioxide in smooth muscles of the caecum resulted in the considerable, compared to the control, increase in the frequency of their spontaneous contractions, the decrease in the duration of the contraction-relaxation cycle, and the decrease in the indices of muscle functioning efficiency (the index of contractions in Montevideo units (MU) and the index of contractions in Alexandria units (AU)). In the same experimental conditions, there was not the increase, but the decrease in the frequency of spontaneous contractions, the duration of the contraction-relaxation cycle, and the increase in MU and AU indices in the smooth muscles of myometrium (in the group of rats, burdened with TiO2 for 30 days). It was also determined that TiO2 modulates both the mechanisms of the input of extracellular Ca2+ ions and the mechanisms of decreasing the concentration of these cations in smooth muscle cells of the caecum during the generation of the high potassium contraction. In these conditions, there is a considerable increase in the normalized maximal velocity of the contraction phase and the relaxation phase. It was demonstrated in the work that titanium dioxide also changes the cholinergic excitation in these muscles. The impact of titanium dioxide in the group of rats, burdened with TiO2, was accompanied with a considerable impairment of the kinetics of forming the tonic component of the oxytocin-induced contraction of the smooth muscles of myometrium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...