Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(6): 2087-2093, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36893363

RESUMEN

Time-resolved analysis of photon cross-correlation function g(2)(τ) is applied to photoluminescence (PL) of individual submicrometer size MAPbI3 perovskite crystals. Surprisingly, an antibunching effect in the long-living tail of PL is observed, while the prompt PL obeys the photon statistics typical for a classical emitter. We propose that antibunched photons from the PL decay tail originate from radiative recombination of detrapped charge carriers which were initially captured by a very limited number (down to one) of shallow defect states. The concentration of these trapping sites is estimated to be in the range 1013-1016 cm-3. In principle, photon correlations can be also caused by highly nonlinear Auger recombination processes; however, in our case it requires unrealistically large Auger recombination coefficients. The potential of the time-resolved g(2)(0) for unambiguous identification of charge rerecombination processes in semiconductors considering the actual number of charge carries and defects states per particle is demonstrated.

2.
J Chem Phys ; 151(17): 174710, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703495

RESUMEN

Luminescence spectroscopy experiments were realized for single colloidal quantum dots CdSe/ZnS in a broad temperature range above room temperature in a nitrogen atmosphere. Broadening and shifts of spectra due to the temperature change as well as due to spectral diffusion processes were detected and analyzed. A linear correlation between the positions of maxima and the squared linewidths of the spectra was found. This dependence was explained by a model that takes into account the slow variation of the electron-phonon coupling strength.

3.
Phys Rev Lett ; 120(13): 133208, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694197

RESUMEN

It has been known for many years that during filamentation of femtosecond light pulses in air, gain is observed on the B to X transition in N_{2}^{+}. While the gain mechanism remains unclear, it has been proposed that recollision, a process that is fundamental to much of strong field science, is critical for establishing gain. We probe this hypothesis by directly comparing the influence of the ellipticity of the pump light on gain in air filaments. Then, we decouple filamentation from gain by measuring the gain in a thin gas jet that we also use for high harmonic generation. The latter allows us to compare the dependence of the gain on the ellipticity of the pump with the dependence of the high harmonic signal on the ellipticity of the fundamental. We find that gain and harmonic generation have very different behavior in both filaments and in the jet. In fact, in a jet we even measure gain with circular polarization. Thus, we establish that recollision does not play a significant role in creating the inversion.

4.
Science ; 357(6348): 303-306, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28729510

RESUMEN

The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes.

6.
Faraday Discuss ; 184: 237-49, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26403863

RESUMEN

We studied the dynamics in ultrathin subsurface layers of an amorphous polymer by the spectra of single fluorescent molecules embedded into the layer by vapor deposition and subsequent controlled diffusion to the desired depth in ≈0.5 nm steps. The spectral trails of single molecules were recorded at 4.5 K as a function of diffusion depth. In depths shallower than 20 nm, the spectral dynamics deviate from those deep in the bulk. Less than 5 nm deep, the linewidths increase rapidly, whereas the number of detected molecules decreases. No zero-phonon lines were observed closer than 0.5 nm to the polymer surface. Possible physical reasons of the observed phenomena are discussed.

7.
J Chem Phys ; 140(20): 204907, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24880325

RESUMEN

We studied the spectral dynamics of single fluorescent dye molecules embedded in ultrathin films (5 - 100 nm) of the amorphous polymer polyisobutylene at cryogenic temperatures and its variation with film thickness. Noticeable portion of molecules in the ensemble shows a behavior which is inconsistent with the standard tunneling model: Their spectral lines are subject to irreversible spectral jumps, continuous shifting, and abrupt chaotic changes of the linewidth or jumping rate. In films thinner than 100 nm, the occurrence of "non-standard" spectral behavior increases with decreasing sample thickness at fixed excitation intensity. In addition, it also increases with laser intensity.

8.
Phys Chem Chem Phys ; 13(5): 1734-42, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21157598

RESUMEN

We present a technique for the measurement of the low-temperature fluorescence excitation spectra and imaging of a substantial fraction of all single chromophore molecules (hundreds of thousands and even more) embedded in solid bulk samples as nanometre-sized probes. An important feature of our experimental studies is that the full information about the lateral coordinates and spectral parameters of all individual molecules is stored for detailed analysis. This method enables us to study a bulk sample in a broad spectral region with ultimate sensitivity, combining excellent statistical accuracy and the capability of detecting rare events. From the raw data we determined the distributions of several parameters of the chromophore spectra and their variations across the inhomogeneous absorption band, including the frequencies of the electronic zero-phonon lines, their spectral linewidths, and fluorescence count rates. Relationships between these distributions and the disorder of the matrix were established for the examples of two polycrystalline solids with very different properties, n-hexadecane and o-dichlorobenzene, and the amorphous polymer polyisobutylene. We also found spatially inhomogeneous distributions of some parameters.

9.
Phys Chem Chem Phys ; 13(5): 1843-8, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21183979

RESUMEN

Numerous experiments have shown that the low-temperature dynamics of a wide variety of disordered solids is qualitatively universal. However, most of these results were obtained with ensemble-averaging techniques which hide the local parameters of the dynamic processes. We used single-molecule (SM) spectroscopy for direct observation of the dynamic processes in disordered solids with different internal structure and chemical composition. The surprising result is that the dynamics of low-molecular-weight glasses and short-chain polymers does not follow, on a microscopic level, the current concept of low-temperature glass dynamics. An extra contribution to the dynamics was detected causing irreproducible jumps and drifts of the SM spectra on timescales between milliseconds and minutes. In most matrices consisting of small molecules and oligomers, the spectral dynamics was so fast that SM spectra could hardly or not at all be recorded and only irregular fluorescence flares were observed. These results provide new mechanistic insight into the behavior of glasses in general: At low temperatures, the local dynamics of disordered solids is not universal but depends on the structure and chemical composition of the material.


Asunto(s)
Vidrio/química , Polímeros/química , Temperatura , Peso Molecular , Polienos/química
10.
Chemphyschem ; 11(1): 182-7, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-19937906

RESUMEN

The study of a new dye-matrix system-quickly frozen ortho-dichlorobenzene weakly doped with terrylene--via single-molecule (SM) spectroscopy is presented. The spectral and photo-physical properties, dynamics, and temperature broadening of SM spectra at low temperatures are discussed. The data reveal a broad inhomogeneous distribution, which indicates a high degree of matrix inhomogeneities, but at the same time, huge fluorescence emission rates and extraordinary SM spectral and photochemical stability with almost complete absence of blinking and bleaching. These unusual properties render the new system a promising candidate for applications in photonics, for example, for delivering single photons on demand.

12.
J Chem Phys ; 122(24): 244705, 2005 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-16035791

RESUMEN

Spectra of single tetra-tert-butylterrylene chromophore molecules embedded in an amorphous polyisobutylene matrix as microprobes were recorded. The individual temperature dependences of the spectral linewidths for the same single molecules (SMs) in a broad temperature interval (1.6 < T < 40 K) have been measured. This enabled us to separate the contributions of tunneling two-level systems and quasilocalized low-frequency vibrational modes (LFMs) to the observed linewidths. The analysis of the T dependences yields the values of LFM frequencies and SM-LFM coupling constants for the LFMs in the local environment of a given chromophore. Pronounced distributions of the observed parameters of LFMs were found. This result can be regarded as the first direct experimental proof of the localized nature of LFMs in glasses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA