Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(33): 39578-39593, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37558244

RESUMEN

The A-site cation-ordered GdBa0.5Sr0.5Co2-xCuxO5+δ (GBSCC) double perovskites are evaluated regarding the development of high-performance oxygen electrodes for reversible solid oxide cells (rSOCs). The aims are to maximally decrease the content of toxic and expensive cobalt by substitution with copper while at the same time improving or maintaining the required thermomechanical and electrocatalytic properties. Studies reveal that compositions with 1 ≤ x ≤ 1.15 are particularly interesting. Their thermal and chemical expansions are decreased, and sufficient transport properties are observed. Complementary density functional theory calculations give deeper insight into oxygen defect formation in the considered materials. Chemical compatibility with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) and Ce0.9Gd0.1O2-δ (GDC) solid electrolytes is evaluated. It is documented that the GdBa0.5Sr0.5Co0.9Cu1.1O5+δ oxygen electrode enables obtaining very low electrode polarization resistance (Rp) values of 0.017 Ω cm2 at 850 °C as well as 0.111 Ω cm2 at 700 °C, which is lower in comparison to that of GdBa0.5Sr0.5CoCuO5+δ (respectively, 0.026 and 0.204 Ω cm2). Systematic distribution of relaxation times analyses allows studies of the electrocatalytic activity and distinguishing elementary steps of the electrochemical reaction at different temperatures. The rate-limiting process is found to be oxygen atom reduction, while the charge transfer at the electrode/electrolyte interface is significantly better with LSGM. The studies also allow elaborating on the catalytic role of the Ag current collector as compared with Pt. The electrodes manufactured using materials with x = 1 and 1.1 permit reaching high power outputs, exceeding 1240 mW cm-2 at 850 °C and 1060 mW cm-2 at 800 °C, for the LSGM-supported cells, which can also work in the electrolysis mode.

2.
Materials (Basel) ; 16(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36837264

RESUMEN

This study focuses on the preparation and characterization of composite gaskets designed for the sealing of the solid oxide cell stacks operating below 700 °C. The seals were fabricated with the addition of various amounts (10-90 wt.%) of 3 mol.% yttria partially stabilized zirconia to a BaO-Al2O3-CaO-SiO2 glass matrix. The sample gaskets in the form of thin frames were shaped by tape casting. The quality of the junctions between the composites and Crofer 22APU steel commonly used as an SOC interconnect was evaluated after thermal treatment of heating to 710 °C, then cooling to the working temperature of around 620 °C and then leaving them for 10h in an air atmosphere, before cooling to room temperature. The samples were also studied after 3, 5, and 10 thermal cycles to determine the changes in microstructure and to evaluate the porosity and possible crystallization of the glass phase. The compression of the seals was calculated on the basis of differences in thickness before and after thermal treatment. The influence of zirconia additions on the mechanical properties of the seals was studied. The experimental results confirmed that glass-ceramic composites are promising materials for gaskets in SOC stacks. The most beneficial properties were obtained for a composite containing 40 wt.% of YSZ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA