Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Vet Res ; 55(1): 22, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374131

RESUMEN

Clinically, Landrace pigs are more susceptible to porcine circovirus-associated diseases (PCVADs) than Piétrain pigs. We previously found that porcine circovirus type 2 (PCV2) can infect T-lymphoblasts. The present study examined the replication kinetics of six PCV2 strains in the lymphoblasts of Landrace and Piétrain pigs. The results showed that T-lymphoblasts from Landrace pigs are much more susceptible to PCV2 infection than those from Piétrain pigs. In addition, PCV2 replication was strain-dependent. PCV2 binding to T-lymphoblasts was partially mediated by chondroitin sulfate (CS) and dermatan sulfate (DS). Phosphacan, an effective internalization mediator in monocytes that contains several CS chains, was also demonstrated to be involved in PCV2 internalization. Viral binding and internalization were not different between the two breeds, however, the subsequent step, the disassembly was. Although inhibition of serine proteases blocked PCV2 replication in both Landrace and Piétrain pigs, this only occurred at a neutral pH in Piétrain pigs, whereas this occurred also at a low pH in Landrace. This suggested that more proteases can cleave PCV2 in Landrace lymphoblasts than in Piétrain lymphoblasts, explaining the better replication. Through co-localization studies of viral particles with endo-lysosomal markers, and quantitative analysis of organelle sizes during viral internalization, it was observed that PCV2 may exhibit a higher propensity for viral escape from late endosomes in Landrace pigs (smaller) compared to Piétrain pigs. These results provide new understandings of the different PCV2 susceptibility in Landrace and Piétrain pigs.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Linfocitos T , Circovirus/fisiología , Linfocitos , Internalización del Virus , Infecciones por Circoviridae/veterinaria
2.
Vet Res ; 54(1): 121, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102697

RESUMEN

African swine fever virus (ASFV) is a substantial threat to pig populations worldwide, contributing to economic disruption and food security challenges. Its spread is attributed to the oronasal transmission route, particularly in animals with acute ASF. Our study addresses the understudied role of nasal mucosa in ASFV infection, using a nasal explant model. The explants remained viable and revealed a discernible ASFV infection in nasal septum and turbinates post-inoculation. Interestingly, more infected cells were found in the turbinates despite its thinner structure. Further analyses showed (i) a higher replication of genotype II strain BEL18 than genotype I strain E70 in the epithelial cell layer, (ii) a preference of ASFV infection for the lamina propria and a tropism of ASFV for various susceptible cell types in different areas in the nasal mucosa, including epithelial cells, macrophages, and endothelial cells. Using porcine respiratory epithelial cells (PoRECs), isolated from nasal tissue, we found a difference in infection mechanism between the two genotypes, with genotype I favoring the basolateral surface and genotype II preferring the apical surface. Moreover, disruption of intercellular junctions enhanced infection for genotype I. This study demonstrated that ASFV may use the respiratory mucosa for entry using different cell types for replication with a genotype difference in their infection of respiratory epithelial cells.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Células Endoteliales , Genotipo , Tráquea , Sus scrofa
3.
Viruses ; 15(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37766231

RESUMEN

White spot disease (WSD) is a severe viral threat to the global shrimp aquaculture industry. However, little is known about white spot syndrome virus (WSSV) transmission dynamics. Our aim was to elucidate this in Litopenaeus vannamei using peroral in vivo WSSV challenge experiments. We demonstrated that WSD progression was rapid and irreversible, leading to death within 78 h. Viral DNA shedding was detected within 6 h of disease onset. This shedding intensified over time, reaching a peak within 12 h of the time of death. Isolating shrimp (clinically healthy and diseased) from infected populations at different time points post-inoculation showed that host-to-host WSSV transmission was occurring around the time of death. Exposing sentinels to environmental components (i.e., water, feces, molts) collected from tanks housing WSSV-infected shrimp resulted in a significantly (p-value < 0.05) increased infection risk after exposure to water (1.0) compared to the risk of infection after exposure to feces (0.2) or molts (0.0). Furthermore, ingestion of WSSV-infected tissues (cannibalism) did not cause a significantly higher number of WSD cases compared to immersion in water in which the same degree of cannibalism had taken place.

4.
Front Cell Infect Microbiol ; 13: 1223530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554354

RESUMEN

Vessel pathology such as increased permeability and blue discoloration is frequently observed with highly pathogenic PRRSV strains. However, data concerning the viral replication in the environment of blood vessels are absent. In the present study, ex vivo models with swine ear and hind leg vein explants were established to study the interaction of PRRSV-1 subtype 1 reference strain LV and highly pathogenic subtype 3 strain Lena with perivenous macrophages. The replication characteristics of these two strains were compared in vein explants by immunofluorescence analysis. The explants maintained a good viability during 48 hours of in vitro culture. We found that CD163-positive macrophages were mainly present around the veins and their number gradually decreased with increasing distance from the veins and longer incubation time. More CD163+Sn- cells than CD163+Sn+ cells (6.6 times more) were observed in the vein explants. The Lena strain demonstrated a higher replication level than the LV strain, with approximately 1.4-fold more infected cells in the surrounding areas of the ear vein and 1.1-fold more infected cells in the leg vein explants at 48 hours post inoculation. In both LV and Lena inoculated vein explants, most infected cells were identified as CD163+Sn+ (> 94%). In this study, an ex vivo vein model was successfully established, and our findings will contribute to a better understanding of the vein pathology during viral infections (e.g., PRRS, classical and African swine fever).


Asunto(s)
Fiebre Porcina Africana , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Macrófagos , Replicación Viral
5.
Microbiol Spectr ; 11(4): e0142123, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37466427

RESUMEN

Alphaherpesvirus infection is associated with attenuation of different aspects of the host innate immune response that is elicited to confine primary infections at the mucosal epithelia. Here, we report that infection of epithelial cells with several alphaherpesviruses of different species, including herpes simplex virus 1 and 2 (HSV-1 and HSV-2), feline alphaherpesvirus 1 (FHV-1), and bovine alphaherpesvirus 1 (BoHV-1) results in the inactivation of the responses driven by the nuclear factor kappa B (NF-κB) pathway, considered a pillar of the innate immune response. The mode to interact with and circumvent NF-κB-driven responses in infected epithelial cells is seemingly conserved in human, feline, and porcine alphaherpesviruses, consisting of a persistent activation of the NF-κB cascade but a potent repression of NF-κB-dependent transcription activity, which relies on replication of viral genomes. However, BoHV-1 apparently deviates from the other investigated members of the taxon in this respect, as BoHV-1-infected epithelial cells do not display the persistent NF-κB activation observed for the other alphaherpesviruses. In conclusion, this study suggests that inhibition of NF-κB transcription activity is a strategy used by several alphaherpesviruses to prevent NF-κB-driven responses in infected epithelial cells. IMPORTANCE The current study provides a side-by-side comparison of the interaction of different alphaherpesviruses with NF-κB, a key and central player in the (proinflammatory) innate host response, in infected nontransformed epithelial cell lines. We report that all studied viruses prevent expression of the hallmark NF-κB-dependent gene IκB, often but not always via similar strategies, pointing to suppression of NF-κB-dependent host gene expression in infected epithelial cells as a common and therefore likely important aspect of alphaherpesviruses.


Asunto(s)
Células Epiteliales , FN-kappa B , Animales , Gatos , Humanos , Porcinos , FN-kappa B/genética , FN-kappa B/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Inmunidad Innata , Expresión Génica
6.
Sci Rep ; 13(1): 8840, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258711

RESUMEN

Porcine alveolar macrophages (PAMs) are widely used for in vitro studies of porcine respiratory viruses. Gene expression in these cells is altered by viral infection and cellular immune response. Real-time reverse transcription polymerase chain reaction (RT-qPCR) is a powerful technique for analyzing these changes. In order to obtain reliable quantitative RT-qPCR data and come to sound conclusions, stable reference genes are needed for normalization of target gene expression. In the present study, we evaluated the expression stability of nine reference genes in PAMs during cultivation and upon porcine reproductive and respiratory syndrome virus (PRRSV) inoculation. Using geNorm and NormFinder algorithms, we identified PSAP and GAPDH as the most stable reference genes under all experimental conditions. The selected reference genes were used for the normalization of CD163 expression under different conditions. This study demonstrates that selection of appropriate reference genes is essential for normalization and validation of RT-qPCR data across all experimental conditions. This study provides a new set of stable reference genes for future studies with porcine respiratory viruses in PAMs.


Asunto(s)
Macrófagos Alveolares , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Macrófagos Alveolares/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Algoritmos , Reacción en Cadena en Tiempo Real de la Polimerasa , Perfilación de la Expresión Génica , Estándares de Referencia
7.
Virus Res ; 326: 199063, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738933

RESUMEN

Feline herpesvirus-1 (FHV-1) is responsible for approximately 50% of diagnosed viral upper respiratory tract disease in cats. The virus infects and replicates in the epithelial cells located in upper respiratory tract. Commercial vaccines do not protect cats from the infection itself or development of latency. Previously, our lab developed a cell culture model using primary feline respiratory epithelial cells (pFRECs) to study respiratory innate immunity to FHV-1 and FHV-1 deletion mutants. However, the numbers of pFRECs that can be obtained per cat is limited. To improve the usage of respiratory epithelial 3D cultures in FHV-1 research, the present study immortalized feline respiratory epithelial cells (iFRECs) and characterized them morphologically and immunologically and evaluated the response to FHV-1 infection. Immortalization was achieved by transduction with Lenti-SV40T and Lenti-HPV E6/E7. Immortalized FRECs could be successfully subcultured for >20 passages, with positive gene expression of SV40T and HPV E6/E7. Immortalized FRECs expressed similar innate immunity-associated genes compared to pFRECs, including genes of Toll-like receptors (TLR1-9), interferon induced genes (OAS1, OAS3, IFI44, IFITM1, IFIT1), chemokines (CCL2, CCL3, CXCL8), pro-inflammatory and regulatory cytokines (IL-6, IL-4, IL-5, IL-12, and IL-18), and antimicrobials (DEFß10, DEFß4B). Finally, FHV-1 inoculation resulted in characteristic cytopathic effects starting at 24 hpi, with more than 80% cells detached and lysed by 72 hpi. Overall FHV-1 growth kinetics in iFRECs resembled the kinetics observed in pFRECs. In conclusion, we demonstrated that iFRECs are a useful tool to study feline respiratory disease including but not limited to FHV-1.


Asunto(s)
Enfermedades de los Gatos , Línea Celular , Infecciones por Herpesviridae , Varicellovirus , Animales , Gatos , Enfermedades de los Gatos/virología , Citocinas/genética , Células Epiteliales , Infecciones por Herpesviridae/veterinaria , Varicellovirus/genética
8.
Microbiol Spectr ; : e0380522, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719220

RESUMEN

Porcine circovirus type 2 (PCV2) is associated with several economically important diseases that are described as PCV2-associated diseases (PCVADs). PCV2 is replicating in lymphoblasts, and PCV2 particles are taken up by monocytes without effective replication or complete degradation. Glycosaminoglycans (GAGs) have been demonstrated to be important receptors for PCV2 binding and entry in T-lymphocytes and continuous cell lines. The objective of this study was to determine whether differences exist in viral uptake and outcome among six PCV2 strains from different disease outbreaks in primary porcine monocytes: Stoon-1010 (PCV2a; PMWS), 1121 (PCV2a; abortion), 1147 (PCV2b; PDNS), 09V448 (PCV2d-1; PCVAD with high viral load in lymphoid tissues [PCVADhigh]), DE222-13 (PCV2d-2; PCVADhigh), and 19V245 (PCV2d-2; PCVADhigh). The uptake of PCV2 in peripheral blood monocytes was different among the PCV2 strains. A large number of PCV2 particles were found in the monocytes for Stoon-1010, DE222-13, and 19V245, while a low number was found for 1121, 1147, and 09V448. Competition with, and removal of GAGs on the cell surface, demonstrated an important role of chondroitin sulfate (CS) and dermatan sulfate (DS) in PCV2 entry into monocytes. The mapping of positively/negatively charged amino acids exposed on the surface of PCV2 capsids revealed that their number and distribution could have an impact on the binding of the capsids to GAGs, and the internalization into monocytes. Based on the distribution of positively charged amino acids on PCV2 capsids, phosphacan was hypothesized, and further demonstrated, as an effective candidate to mediate virus attachment to, and internalization in, monocytes. IMPORTANCE PCV2 is present on almost every pig farm in the world and is associated with a high number of diseases (PCV2-associated diseases [PCVADs]). It causes severe economic losses. Although vaccination is successfully applied in the field, there are still a lot of unanswered questions on the pathogenesis of PCV2 infections. This article reports on the uptake difference of various PCV2 strains by peripheral blood monocytes, and reveals the mechanism of the strong viral uptake ability of monocytes of Piétrain pigs. We further demonstrated that: (i) GAGs mediate the uptake of PCV2 particles by monocytes, (ii) positively charged three-wings-windmill-like amino acid patterns on the capsid outer surface are activating PCV2 uptake, and (iii) phosphacan is one of the potential candidates for PCV2 internalization. These results provide new insights into the mechanisms involved in PCVAD and contribute to a better understanding of PCV2 evolution. This may lead to the development of resistant pigs.

9.
Front Microbiol ; 13: 989242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060735

RESUMEN

Rotavirus A (RVA) is an important pathogen causing acute gastroenteritis in animals and humans. Attachment to the host receptor is a crucial step for virus replication. The VP8* domain is the distal terminal region of the RVA spike protein VP4 (expressed by the P gene) and is important for rotavirus binding and infectivity. Recent studies have indicated a role for non-sialylated glycans, including mucin core 2 and histo-blood group antigens (HBGAs), in the infectivity of human and animal group A rotaviruses. In the present study, we determined if porcine rotavirus-derived recombinant VP8* of the endemic strains 14R103 G5P[6], 13R054 G5P[7], 12R010 G4P[13], 12R046 G9P[23], and 12R022 G2P[27] interact with hitherto uncharacterized glycans. We successfully produced five recombinant GST-VP8* proteins of genotype P[6], P[7], P[13], P[23], and P[27]. The hemagglutination assay showed genotypes P[7] and P[23] hemagglutinate porcine and human red blood cells. In an array screen of > 300 glycans, recombinant VP8* of rotavirus genotype P[6], P[7], and P[13] showed specific binding to glycans with a Gal-ß-1,4-Glc (ß-lactose) motif, which forms the core structure of HBGAs. The specificity of glycan-binding was confirmed through an ELISA-based oligosaccharide binding assay. Further, 13R054 G5P[7] and 12R046 G9P[23] infectivity was significantly reduced by ß-lactose in MA104 cells and primary porcine enterocytes. These data suggest that lactose, the main natural sugar in milk, plays an important role in protecting piglets from enteric viral replication and diarrhea.

10.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356005

RESUMEN

The family Arteriviridae comprises enveloped RNA viruses with a linear, positive-sense genome of approximately 12.7 to 15.7 kb. The spherical, pleomorphic virions have a median diameter of 50-74 nm and include eight to eleven viral proteins. Arteriviruses infect non-human mammals in a vector-independent manner. Infections are often persistent and can either be asymptomatic or produce overt disease. Some arteriviruses are important veterinary pathogens while others infect particular species of wild rodents or African non-human primates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arteriviridae, which is available at ictv.global/report/arteriviridae.


Asunto(s)
Arteriviridae/clasificación , Arteriviridae/genética , Filogenia , Animales , Arteriviridae/ultraestructura , Arterivirus/clasificación , Arterivirus/genética , Endocitosis , Genoma Viral , Primates , Infecciones por Virus ARN , Proteínas Virales/genética , Virión/clasificación , Virión/genética , Virión/ultraestructura , Acoplamiento Viral , Replicación Viral
11.
Front Microbiol ; 12: 662686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746936

RESUMEN

Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus related to pseudorabies virus (PRV) and varicella-zoster virus (VZV). This virus is one of the major pathogens affecting horses worldwide. EHV-1 is responsible for respiratory disorders, abortion, neonatal foal death and equine herpes myeloencephalopathy (EHM). Over the last decade, EHV-1 has received growing attention due to the frequent outbreaks of abortions and/or EHM causing serious economical losses to the horse industry worldwide. To date, there are no effective antiviral drugs and current vaccines do not provide full protection against EHV-1-associated diseases. Therefore, there is an urgent need to gain a better understanding of the pathogenesis of EHV-1 in order to develop effective therapies. The main objective of this review is to provide state-of-the-art information on the pathogenesis of EHV-1. We also highlight recent findings on EHV-1 immune evasive strategies at the level of the upper respiratory tract, blood circulation and endothelium of target organs allowing the virus to disseminate undetected in the host. Finally, we discuss novel approaches for drug development based on our current knowledge of the pathogenesis of EHV-1.

12.
Front Immunol ; 12: 790415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069571

RESUMEN

To face the continuous emergence of SARS-CoV-2 variants, broadly protective therapeutic antibodies are highly needed. We here focused on the fusion peptide (FP) region of the viral spike antigen since it is highly conserved among alpha- and betacoronaviruses. First, we found that coronavirus cross-reactive antibodies are commonly formed during infection, being omnipresent in sera from COVID-19 patients, in ~50% of pre-pandemic human sera (rich in antibodies against endemic human coronaviruses), and even in feline coronavirus-infected cats. Pepscan analyses demonstrated that a confined N-terminal region of the FP is strongly immunogenic across diverse coronaviruses. Peptide-purified human antibodies targeting this conserved FP epitope exhibited broad binding of alpha- and betacoronaviruses, besides weak and transient SARS-CoV-2 neutralizing activity. Being frequently elicited by coronavirus infection, these FP-binding antibodies might potentially exhibit Fc-mediated effector functions and influence the kinetics or severity of coronavirus infection and disease.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , COVID-19/inmunología , Coronavirus Felino/inmunología , Pandemias , Péptidos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Donantes de Sangre , COVID-19/sangre , COVID-19/virología , Prueba Serológica para COVID-19/métodos , Gatos , Chlorocebus aethiops , Reacciones Cruzadas , Epítopos/inmunología , Humanos , Porcinos , Células Vero
13.
BMC Vet Res ; 16(1): 369, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004025

RESUMEN

BACKGROUND: African swine fever (ASF) is a highly fatal viral hemorrhagic disease of domestic pigs that threatens livelihoods and food security. In Africa, ASF virus (ASFV) circulates in sylvatic (transmission between warthogs and soft argasid ticks) and domestic (transmission between domestic pigs) cycles, with outbreaks resulting from ASFV spill-over from sylvatic cycle. A number of outbreaks were reported in different parts of Tanzania between 2015 and 2017. The present study investigated ASFV transmission patterns through viral DNA sequencing and phylogenetic analysis. A total of 3120 tissue samples were collected from 2396 domestic pigs during outbreaks at different locations in Tanzania between 2015 and 2017. Partial sequencing of the B646L (p72) gene was conducted for diagnostic confirmation and molecular characterization of ASFV. Phylogenetic analysis to study the relatedness of current ASFV with those that caused previous outbreaks in Tanzania and representatives of all known 24 ASFV was performed using the Maximum Composite Likelihood model with 1000 bootstrap replications in MEGA 6.0. RESULTS: ASFV was confirmed to cause disease in sampled domestic pigs. ASFV genotypes II, IX, and X were detected from reported outbreaks in 2015-2017. The current ASFV isolates were similar to those recently documented in the previous studies in Tanzania. The similarities of these isolates suggests for continuous circulation of ASFV with virus maintenance within the domestic pigs. CONCLUSIONS: Genetic analysis confirmed the circulation of ASFV genotypes II, IX, and X by partial B646L (p72) gene sequencing. The similarities of current isolates to previously isolated Tanzanian isolates and pattern of disease spread suggest for continuous circulation of ASF with virus' maintenance in the domestic pigs. Although certain viral genotypes seem to be geographically restricted into certain zones within Tanzania, genotype II seems to expand its geographical range northwards with the likelihood of spreading to other states of the East African Community. The spread of ASFV is due to breach of quarantine and transportation of infected pigs via major highways. Appropriate control measures including zoosanitary measures and quarantine enforcement are recommended to prevent ASF domestic circulation in Tanzania.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Animales , ADN Viral/genética , Brotes de Enfermedades/veterinaria , Genotipo , Filogenia , Análisis de Secuencia de ADN , Sus scrofa , Porcinos , Tanzanía/epidemiología
14.
Pathogens ; 9(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121171

RESUMEN

Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily of the herpesviruses and is the causative agent of Aujeszky's disease in pigs, causing respiratory, neurological, and reproductive symptoms. Given the heavy economic losses associated with Aujeszky's disease epidemics, great efforts were made to develop efficacious vaccines. One of the best modified live vaccines to this day is the attenuated Bartha K61 strain. The use of this vaccine in extensive vaccination programs worldwide has assisted considerably in the eradication of PRV from the domesticated pig population in numerous countries. The Bartha K61 strain was described in 1961 by Adorján Bartha in Budapest and was obtained by serial passaging in different cell cultures. Ever since, it has been intensively studied by several research groups, for example, to explore its efficacy as a vaccine strain, to molecularly and mechanistically explain its attenuation, and to use it as a retrograde neuronal tracer and as a vector vaccine. Given that the Bartha K61 vaccine strain celebrates its 60th birthday in 2021 with no sign of retirement, this review provides a short summary of the knowledge on its origin, characteristics, and use as a molecular tool and as a vaccine.

15.
Proc Natl Acad Sci U S A ; 117(45): 28374-28383, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097672

RESUMEN

Viruses, such as white spot syndrome virus, and bacteria, such as Vibrio species, wreak havoc in shrimp aquaculture [C. M. Escobedo-Bonilla et al., J. Fish. Dis. 31, 1-18 (2008)]. As the main portal of entry for shrimp-related pathogens remain unclear, infectious diseases are difficult to prevent and control. Because the cuticle is a strong pathogen barrier, regions lacking cuticular lining, such as the shrimp's excretory organ, "the antennal gland," are major candidate entry portals [M. Corteel et al., Vet. Microbiol. 137, 209-216 (2009)]. The antennal gland, up until now morphologically underexplored, is studied using several imaging techniques. Using histology-based three-dimensional technology, we demonstrate that the antennal gland resembles a kidney, connected to a urinary bladder with a nephropore (exit opening) and a complex of diverticula, spread throughout the cephalothorax. Micromagnetic resonance imaging of live shrimp not only confirms the histology-based model, but also indicates that the filling of the diverticula is linked to the molting cycle and possibly involved therein. Based on function and complexity, we propose to rename the antennal gland as the "nephrocomplex." By an intrabladder inoculation, we showed high susceptibility of this nephrocomplex to both white spot syndrome virus and Vibrio infection compared to peroral inoculation. An induced drop in salinity allowed the virus to enter the nephrocomplex in a natural way and caused a general infection followed by death; fluorescent beads were used to demonstrate that particles may indeed enter through the nephropore. These findings pave the way for oriented disease control in shrimp.


Asunto(s)
Muda/fisiología , Penaeidae/microbiología , Penaeidae/virología , Glándulas Sebáceas/microbiología , Glándulas Sebáceas/patología , Animales , Acuicultura , Salinidad , Glándulas Sebáceas/diagnóstico por imagen , Glándulas Sebáceas/virología , Vibrio/patogenicidad , Vibriosis/patología , Vibriosis/veterinaria , Internalización del Virus , Virus del Síndrome de la Mancha Blanca 1/patogenicidad
16.
Viruses ; 12(4)2020 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260595

RESUMEN

Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been reported to use aminopeptidase N (APN) as a cellular receptor. Recently, the role of APN as a receptor for PEDV has been questioned. In our study, the role of APN in PEDV and TGEV infections was studied in primary porcine enterocytes. After seven days of cultivation, 89% of enterocytes presented microvilli and showed a two- to five-fold higher susceptibility to PEDV and TGEV. A significant increase of PEDV and TGEV infection was correlated with a higher expression of APN, which was indicative that APN plays an important role in porcine coronavirus infections. However, PEDV and TGEV infected both APN positive and negative enterocytes. PEDV and TGEV Miller showed a higher infectivity in APN positive cells than in APN negative cells. In contrast, TGEV Purdue replicated better in APN negative cells. These results show that an additional receptor exists, different from APN for porcine coronaviruses. Subsequently, treatment of enterocytes with neuraminidase (NA) had no effect on infection efficiency of TGEV, implying that terminal cellular sialic acids (SAs) are no receptor determinants for TGEV. Treatment of TGEV with NA significantly enhanced the infection which shows that TGEV is masked by SAs.


Asunto(s)
Antígenos CD13/metabolismo , Gastroenteritis Porcina Transmisible/patología , Virus de la Diarrea Epidémica Porcina/metabolismo , Receptores Virales/metabolismo , Ácidos Siálicos/metabolismo , Virus de la Gastroenteritis Transmisible/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Enterocitos/virología , Hidrocortisona/farmacología , Insulina/farmacología , Mucosa Respiratoria/virología , Espermidina/farmacología , Porcinos , Células Vero , Acoplamiento Viral , Replicación Viral/efectos de los fármacos
17.
Vet Res ; 51(1): 21, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093748

RESUMEN

Sialoadhesin (Sn) and CD163 have been recognized as two important mediators for porcine reproductive and respiratory syndrome virus (PRRSV) in host macrophages. Recently, it has been demonstrated that the highly virulent Lena strain has a wider macrophage tropism than the low virulent LV strain in the nasal mucosa. Not only CD163+Sn+ macrophages are infected by Lena but also CD163+Sn- macrophages. This suggests that an alternative receptor exists for binding and internalization of PRRSV Lena in the CD163+Sn- macrophages. Further investigation to find the new entry receptor was hampered by the difficulty of isolating these macrophages from the nasal mucosa. In the present study, a new population of CD163+Sn- cells has been identified that is specifically localized in the nasal lamina propria and can be isolated by an intranasal digestion approach. Isolated nasal cells were characterized using specific cell markers and their susceptibility to two different PRRSV-1 strains (LV and Lena) was tested. Upon digestion, 3.2% (flow cytometry)-6.4% (confocal microscopy) of the nasal cells were identified as CD163+ and all (99.7%) of these CD163+ cells were Sn-. These CD163+Sn- cells, designated as "nasal surface macrophages", showed a 4.9 times higher susceptibility to the Lena strain than to the LV strain. Furthermore, the Lena-inoculated cell cultures showed an upregulation of CD163. These results showed that our new cell isolation system is ideal for the further functional and phenotypical analysis of the new population of nasal surface macrophages and further research on the molecular pathogenesis of PRRSV in the nose.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Macrófagos/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Receptores de Superficie Celular/inmunología , Animales , Técnicas de Cultivo de Célula , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/inmunología , Porcinos
18.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31996426

RESUMEN

ß-Defensins protect the respiratory tract against the myriad of microbial pathogens entering the airways with each breath. However, this potentially hostile environment is known to serve as a portal of entry for herpesviruses. The lack of suitable respiratory model systems has precluded understanding of how herpesvirus virions overcome the abundant mucosal ß-defensins during host invasion. We demonstrate how a central alphaherpesvirus, equine herpesvirus type 1 (EHV1), actually exploits ß-defensins to invade its host and initiate viral spread. The equine ß-defensins (eBDs) eBD1, -2, and -3 were produced and secreted along the upper respiratory tract. Despite the marked antimicrobial action of eBD2 and -3 against many bacterial and viral pathogens, EHV1 virions were resistant to eBDs through the action of the viral glycoprotein M envelope protein. Pretreatment of EHV1 virions with eBD2 and -3 increased the subsequent infection of rabbit kidney (RK13) cells, which was dependent on viral N-linked glycans. eBD2 and -3 also caused the aggregation of EHV1 virions on the cell surface of RK13 cells. Pretreatment of primary equine respiratory epithelial cells (EREC) with eBD1, -2, and -3 resulted in increased EHV1 virion binding to and infection of these cells. EHV1-infected EREC, in turn, showed an increased production of eBD2 and -3 compared to that seen in mock- and influenza virus-infected EREC. In addition, these eBDs attracted leukocytes, which are essential for EHV1 dissemination and which serve as latent infection reservoirs. These novel mechanisms provide new insights into herpesvirus respiratory tract infection and pathogenesis.IMPORTANCE How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of host-specific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine ß-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution.


Asunto(s)
Alphaherpesvirinae/fisiología , Antiinfecciosos/farmacología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , beta-Defensinas/farmacología , Animales , Antiinfecciosos/efectos adversos , Línea Celular , Células Epiteliales/virología , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1 , Enfermedades de los Caballos/virología , Caballos , Interacciones Huésped-Patógeno/fisiología , Evasión Inmune , Conejos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Proteínas del Envoltorio Viral , beta-Defensinas/efectos adversos
19.
Vet Res ; 50(1): 110, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856906

RESUMEN

Intestinal epithelium functions as a barrier to protect multicellular organisms from the outside world. It consists of epithelial cells closely connected by intercellular junctions, selective gates which control paracellular diffusion of solutes, ions and macromolecules across the epithelium and keep out pathogens. Rotavirus is one of the major enteric viruses causing severe diarrhea in humans and animals. It specifically infects the enterocytes on villi of small intestines. The polarity of rotavirus replication in their target enterocytes and the role of intestinal epithelial integrity were examined in the present study. Treatment with EGTA, a drug that chelates calcium and disrupts the intercellular junctions, (i) significantly enhanced the infection of rotavirus in primary enterocytes, (ii) increased the binding of rotavirus to enterocytes, but (iii) considerably blocked internalization of rotavirus. After internalization, rotavirus was resistant to EGTA treatment. To investigate the polarity of rotavirus infection, the primary enterocytes were cultured in a transwell system and infected with rotavirus at either the apical or the basolateral surface. Rotavirus preferentially infected enterocytes at the basolateral surface. Restriction of infection through apical inoculation was overcome by EGTA treatment. Overall, our findings demonstrate that integrity of the intestinal epithelium is crucial in the host's innate defense against rotavirus infection. In addition, the intercellular receptor is located basolaterally and disruption of intercellular junctions facilitates the binding of rotavirus to their receptor at the basolateral surface.


Asunto(s)
Enterocitos/virología , Células Epiteliales/virología , Mucosa Intestinal/citología , Rotavirus/clasificación , Rotavirus/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo/veterinaria , Ácido Egtácico/farmacología , Enterocitos/efectos de los fármacos , Miofibroblastos/fisiología , Porcinos , Internalización del Virus , Replicación Viral
20.
J Gen Virol ; 100(10): 1417-1430, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31483243

RESUMEN

Feline coronavirus (FCoV) has been identified as the aetiological agent of feline infectious peritonitis (FIP), a highly fatal systemic disease in cats. FCoV open reading frame 3 (ORF3) encodes accessory proteins 3a, 3b and 3 c. The FCoV 3b accessory protein consists of 72 amino acid residues and localizes to nucleoli and mitochondria. The present work focused on peptide domains within FCoV 3b that drive its intracellular trafficking. Transfection of different cell types with FCoV 3b fused to enhanced green fluorescent protein (EGFP) or 3×FLAG confirmed localization of FCoV 3b in the mitochondria and nucleoli. Using serial truncated mutants, we showed that nucleolar accumulation is controlled by a joint nucleolar and nuclear localization signal (NoLS/NLS) in which the identified overlapping pat4 motifs (residues 53-57) play a critical role. Mutational analysis also revealed that mitochondrial translocation is mediated by N-terminal residues 10-35, in which a Tom20 recognition motif (residues 13-17) and two other overlapping hexamers (residues 24-30) associated with mitochondrial targeting were identified. In addition, a second Tom20 recognition motif was identified further downstream (residues 61-65), although the mitochondrial translocation evoked by these residues seemed less efficient as a diffuse cytoplasmic distribution was also observed. Assessing the spatiotemporal distribution of FCoV 3b did not provide convincing evidence of dynamic shuttling behaviour between the nucleoli and the mitochondria.


Asunto(s)
Coronavirus Felino/metabolismo , Peritonitis Infecciosa Felina/virología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Gatos , Nucléolo Celular/virología , Coronavirus Felino/química , Coronavirus Felino/genética , Mitocondrias/virología , Señales de Localización Nuclear , Sistemas de Lectura Abierta , Dominios Proteicos , Transporte de Proteínas , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...