Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(12): e0279331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36542627

RESUMEN

Immersion in tricaine methanesulfonate (i.e. TMS) has been used for euthanasia of Xenopus laevis (African Clawed frogs). However, the time for preparation and potential human health hazards may pose as a barrier for large group culls. Here, we aimed to investigate whether immersion in bupivacaine is an effective means to euthanize this species. In experiment one, frogs (n = 10/group) were randomly assigned to 1-h immersion in 1 of 3 treatment groups: 1) TMS-5 (MS-222, 5g/L); 2) TMS-10 (MS-222, 10 g/L); or 3) Bupi-1.5 (0.5% Bupivacaine, 1.5 g/L). Frogs were then removed from solutions, rinsed with system water, and placed into a recovery cage. Heart rate was evaluated audibly via doppler ultrasound flow over 1 min at immediate removal (T1h), at 2 (T2h), and 3 (T3h) h in the recovery cage. In experiment two, frogs (n = 7/group) underwent 5-h & 19-h immersion in either TMS-5 or Bupi-1.5, with heart rate assessment at 5 and 19 hrs. Righting reflex and withdrawal reflex of the hindlimb were tested during the experiments. Experiment one-after the 1-h immersion, Bupi-1.5 treated animals had decreased heart rates compared to TMS-5 and TMS-10 treated animals by T2h. Neither TMS-5, TMS-10, nor Bupi-1.5 ceased heart rate after the 1-h immersion. Experiment two-after the 5-h immersion, Bupi-1.5 and TMS-5 treated animals were comparable in heart rates. 43% of TMS-5 animals and 14% of the Bupi-1.5 animals had completely ceased heart rates at T5h. At 19 h all remaining animals exhibited rigor mortis and had ceased heart rate. We recommend 19-h of immersion using either TMS-5 or Bupi-1.5 for cessation of heart rate in African Clawed frogs. These data are strong support for the use of secondary physical methods for euthanasia in African Clawed frogs when euthanasia by immersion is performed.


Asunto(s)
Anestésicos Locales , Bupivacaína , Animales , Humanos , Bupivacaína/farmacología , Xenopus laevis/fisiología , Pueblo Africano
2.
Animal Model Exp Med ; 4(2): 129-137, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34179720

RESUMEN

Background: Extended-release buprenorphine (XR) is indicated for pain management in rodents, but little is known about its use in mice. This study aimed to investigate whether high dose XR effectively attenuates post-operative hypersensitivity better than low dose XR in a mouse model of incisional pain. Methods: Mice (n = 44) were randomly assigned to 1 of 4 treatment groups: (a) saline (1 ml/kg SC, once); (b) sustained release buprenorphine (Bup-SR, 1 mg/kg SC, once); (c) low dose extended-release buprenorphine (XR-lo, 3.25 mg/kg SC, once); (d) high dose extended-release buprenorphine (XR-hi, 6.5 mg/kg SC, once). On days -1, 0 (4 hours), 1, 2, and 3, mechanical and thermal hypersensitivities were evaluated, and plasma buprenorphine concentrations were measured. Results: Mechanical (days 0-2) and thermal (days 0-1) hypersensitivities were observed in the saline group. Bup-SR, XR-lo, and XR-hi attenuated mechanical hypersensitivity on days 0, 1, and 2. None of the treatment groups, except XR-Lo on day 0, attenuated thermal hypersensitivity on days 0 or 1. Plasma buprenorphine concentration peaked at 4 hours (day 0) in all treatment groups and remained greater than 1 ng/mL on days 0-2. No abnormal clinical observations or gross pathologic findings were seen in any groups. Conclusion: The results indicate XR-hi did not effectively attenuate post-operative hypersensitivity better than XR-lo. Thus both 3.25 and 6.5 mg/kg XR are recommended for attenuating post-operative hypersensitivity for at least up to 48 hours in mice.


Asunto(s)
Buprenorfina , Hipersensibilidad , Animales , Preparaciones de Acción Retardada , Lípidos , Ratones , Dolor
3.
ILAR J ; 62(1-2): 238-273, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34180990

RESUMEN

There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors' recommendation based on the authors' clinical experiences.


Asunto(s)
Anestesia , Anestésicos , Experimentación Animal , Anestesia/métodos , Animales , Ratones , Reproducibilidad de los Resultados
4.
BMC Genomics ; 19(1): 355, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29747585

RESUMEN

BACKGROUND: Evolution occurred exclusively under the full spectrum of sunlight. Conscription of narrow regions of the solar spectrum by specific photoreceptors suggests a common strategy for regulation of genetic pathways. Fluorescent light (FL) does not possess the complexity of the solar spectrum and has only been in service for about 60 years. If vertebrates evolved specific genetic responses regulated by light wavelengths representing the entire solar spectrum, there may be genetic consequences to reducing the spectral complexity of light. RESULTS: We utilized RNA-Seq to assess changes in the transcriptional profiles of Xiphophorus maculatus skin after exposure to FL ("cool white"), or narrow wavelength regions of light between 350 and 600 nm (i.e., 50 nm or 10 nm regions, herein termed "wavebands"). Exposure to each 50 nm waveband identified sets of genes representing discrete pathways that showed waveband specific transcriptional modulation. For example, 350-400 or 450-500 nm waveband exposures resulted in opposite regulation of gene sets marking necrosis and apoptosis (i.e., 350-400 nm; necrosis suppression, apoptosis activation, while 450-500 nm; apoptosis suppression, necrosis activation). Further investigation of specific transcriptional modulation employing successive 10 nm waveband exposures between 500 and 550 nm showed; (a) greater numbers of genes may be transcriptionally modulated after 10 nm exposures, than observed for 50 nm or FL exposures, (b) the 10 nm wavebands induced gene sets showing greater functional specificity than 50 nm or FL exposures, and (c) the genetic effects of FL are primarily due to 30 nm between 500 and 530 nm. Interestingly, many genetic pathways exhibited completely opposite transcriptional effects after different waveband exposures. For example, the epidermal growth factor (EGF) pathway exhibits transcriptional suppression after FL exposure, becomes highly active after 450-500 nm waveband exposure, and again, exhibits strong transcriptional suppression after exposure to the 520-530 nm waveband. CONCLUSIONS: Collectively, these results suggest one may manipulate transcription of specific genetic pathways in skin by exposure of the intact animal to specific wavebands of light. In addition, we identify genes transcriptionally modulated in a predictable manner by specific waveband exposures. Such genes, and their regulatory elements, may represent valuable tools for genetic engineering and gene therapy protocols.


Asunto(s)
Ciprinodontiformes/genética , Fluorescencia , Regulación de la Expresión Génica/efectos de la radiación , Piel/efectos de la radiación , Transcripción Genética/efectos de la radiación , Animales , Regulación hacia Abajo , Factor de Crecimiento Epidérmico/genética , Femenino , Masculino , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Piel/metabolismo , Regulación hacia Arriba
5.
Artículo en Inglés | MEDLINE | ID: mdl-28965926

RESUMEN

It has been reported that exposure to artificial light may affect oxygen intake, heart rate, absorption of vitamins and minerals, and behavioral responses in humans. We have reported specific gene expression responses in the skin of Xiphophorus fish after exposure to ultraviolet light (UV), as well as, both broad spectrum and narrow waveband visible light. In regard to fluorescent light (FL), we have shown that male X. maculatus exposed to 4100K FL (i.e. "cool white") rapidly suppress transcription of many genes involved with DNA replication and repair, chromosomal segregation, and cell cycle progression in skin. We have also detailed sex specific transcriptional responses of Xiphophorus skin after exposure to UVB. However, investigation of gender differences in global gene expression response after exposure to 4100K FL has not been reported, despite common use of this FL source for residential, commercial, and animal facility illumination. Here, we compare RNA-Seq results analyzed to assess changes in the global transcription profiles of female and male X. maculatus skin in response to 4100K FL exposure. Our results suggest 4100K FL exposure incites a sex-biased genetic response including up-modulation of inflammation in females and down modulation of DNA repair/replication in males. In addition, we identify clusters of genes that become oppositely modulated in males and females after FL exposure that are principally involved in cell death and cell proliferation.


Asunto(s)
Ciprinodontiformes/genética , Proteínas de Peces/genética , Luz , Transcripción Genética/efectos de la radiación , Animales , Ciprinodontiformes/metabolismo , Femenino , Proteínas de Peces/metabolismo , Fluorescencia , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de la radiación , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores Sexuales , Transcriptoma/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA