Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Mov Disord ; 39(5): 897-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436103

RESUMEN

BACKGROUND: Although the group of paroxysmal kinesigenic dyskinesia (PKD) genes is expanding, the molecular cause remains elusive in more than 50% of cases. OBJECTIVE: The aim is to identify the missing genetic causes of PKD. METHODS: Phenotypic characterization, whole exome sequencing and association test were performed among 53 PKD cases. RESULTS: We identified four causative variants in KCNJ10, already associated with EAST syndrome (epilepsy, cerebellar ataxia, sensorineural hearing impairment and renal tubulopathy). Homozygous p.(Ile209Thr) variant was found in two brothers from a single autosomal recessive PKD family, whereas heterozygous p.(Cys294Tyr) and p.(Thr178Ile) variants were found in six patients from two autosomal dominant PKD families. Heterozygous p.(Arg180His) variant was identified in one additional sporadic PKD case. Compared to the Genome Aggregation Database v2.1.1, our PKD cohort was significantly enriched in both rare heterozygous (odds ratio, 21.6; P = 9.7 × 10-8) and rare homozygous (odds ratio, 2047; P = 1.65 × 10-6) missense variants in KCNJ10. CONCLUSIONS: We demonstrated that both rare monoallelic and biallelic missense variants in KCNJ10 are associated with PKD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Mutación Missense , Canales de Potasio de Rectificación Interna , Humanos , Masculino , Mutación Missense/genética , Femenino , Canales de Potasio de Rectificación Interna/genética , Adulto , Adolescente , Niño , Distonía/genética , Adulto Joven , Linaje , Persona de Mediana Edad , Secuenciación del Exoma , Preescolar
2.
Proc Natl Acad Sci U S A ; 121(11): e2316365121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38451949

RESUMEN

Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Animales , Humanos , Tálamo/fisiología , Neuronas/fisiología , Microelectrodos
3.
Nat Commun ; 15(1): 2586, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531880

RESUMEN

Exogenous attention, the process that makes external salient stimuli pop-out of a visual scene, is essential for survival. How attention-capturing events modulate human brain processing remains unclear. Here we show how the psychological construct of exogenous attention gradually emerges over large-scale gradients in the human cortex, by analyzing activity from 1,403 intracortical contacts implanted in 28 individuals, while they performed an exogenous attention task. The timing, location and task-relevance of attentional events defined a spatiotemporal gradient of three neural clusters, which mapped onto cortical gradients and presented a hierarchy of timescales. Visual attributes modulated neural activity at one end of the gradient, while at the other end it reflected the upcoming response timing, with attentional effects occurring at the intersection of visual and response signals. These findings challenge multi-step models of attention, and suggest that frontoparietal networks, which process sequential stimuli as separate events sharing the same location, drive exogenous attention phenomena such as inhibition of return.


Asunto(s)
Atención , Visión Ocular , Humanos , Atención/fisiología , Encéfalo , Mapeo Encefálico , Estimulación Luminosa , Percepción Visual/fisiología
4.
Epilepsia ; 65(4): 929-943, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38339978

RESUMEN

OBJECTIVE: Status epilepticus (SE) is a life-threatening prolonged epileptic seizure that affects ~40 per 100 000 people yearly worldwide. The persistence of seizures may lead to excitotoxic processes, neuronal loss, and neuroinflammation, resulting in long-term neurocognitive and functional disabilities. A better understanding of the pathophysiological mechanisms underlying SE consequences is crucial for improving SE management and preventing secondary neuronal injury. METHODS: We conducted a comprehensive untargeted metabolomic analysis, using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), on plasma and cerebrospinal fluid (CSF) samples from 78 adult patients with SE and 107 control patients without SE, including 29 with CSF for both groups. The metabolomic fingerprints were compared between patients with SE and controls. Metabolites with differences in relative abundances that could not be attributed to treatment or nutrition provided in the intensive care unit were isolated. Enrichment analysis was performed on these metabolites to identify the most affected pathways. RESULTS: We identified 76 metabolites in the plasma and 37 in the CSF that exhibited differential expression in patients with SE compared to controls. The enrichment analysis revealed that metabolic dysregulations in patients with SE affected primarily amino acid metabolism (including glutamate, alanine, tryptophan, glycine, and serine metabolism), pyrimidine metabolism, and lipid homeostasis. Specifically, patients with SE had elevated levels of pyruvate, quinolinic acid, and keto butyric acid levels, along with lower levels of arginine, N-acetylaspartylglutamate (NAAG), tryptophan, uracil, and uridine. The tryptophan kynurenine pathway was identified as the most significantly altered in SE, resulting in the overproduction of quinolinic acid, an N-methyl-d-aspartate (NMDA) receptor agonist with pro-inflammatory properties. SIGNIFICANCE: This study has identified several pathways that may play pivotal roles in SE consequences, such as the tryptophan kynurenine pathway. These findings offer novel perspectives for the development of neuroprotective therapeutics.


Asunto(s)
Quinurenina , Estado Epiléptico , Adulto , Humanos , Quinurenina/líquido cefalorraquídeo , Triptófano/metabolismo , Estudios de Casos y Controles , Ácido Quinolínico/líquido cefalorraquídeo , Convulsiones
5.
Nat Commun ; 14(1): 6534, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848435

RESUMEN

Reinforcement-based adaptive decision-making is believed to recruit fronto-striatal circuits. A critical node of the fronto-striatal circuit is the thalamus. However, direct evidence of its involvement in human reinforcement learning is lacking. We address this gap by analyzing intra-thalamic electrophysiological recordings from eight participants while they performed a reinforcement learning task. We found that in both the anterior thalamus (ATN) and dorsomedial thalamus (DMTN), low frequency oscillations (LFO, 4-12 Hz) correlated positively with expected value estimated from computational modeling during reward-based learning (after outcome delivery) or punishment-based learning (during the choice process). Furthermore, LFO recorded from ATN/DMTN were also negatively correlated with outcomes so that both components of reward prediction errors were signaled in the human thalamus. The observed differences in the prediction signals between rewarding and punishing conditions shed light on the neural mechanisms underlying action inhibition in punishment avoidance learning. Our results provide insight into the role of thalamus in reinforcement-based decision-making in humans.


Asunto(s)
Refuerzo en Psicología , Recompensa , Humanos , Reacción de Prevención/fisiología , Castigo , Tálamo
6.
Epilepsy Res ; 197: 107232, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37783038

RESUMEN

Heart rate variability (HRV) is an accessible and convenient means to assess the sympathetic/parasympathetic balance. Autonomic dysfunctions may reflect a pro-ictal state and occur before the seizure onset. Previous studies have reported HRV-based models to identify preictal states in continuous electrocardiogram (EKG) monitoring. Here, we evaluated the ability of HRV metrics extracted from daily single resting-state periods to estimate the risk of upcoming seizure(s) using probabilistic forecasts. Daily standardized 10-min vigilance-controlled EKG periods were recorded in 15 patients with drug-resistant focal epilepsy who underwent intracerebral electroencephalography (EEG). Analyses of a total of 156 periods, based on machine learning approaches, suggested that HRV features can identify preictal states with a median AUC of 0.75 [0.68;0.99]. Pseudoprospective daily forecasts yielded a median Brier score of 0.3 [0.18;0.48]. About 60% of preictal days were correctly forecasted, while false positive predictions were noticed in 24% of interictal days. Daily resting HRV seems to capture information on autonomic variations that may reflect a pro-ictal state. The method could be embedded in an ambulatory clinical seizure prediction device, but additional modalities (prodromes, EEG-based features, etc.) should be associated to improve its performance.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Epilepsia Refractaria , Humanos , Frecuencia Cardíaca/fisiología , Convulsiones/diagnóstico , Electroencefalografía/métodos
8.
Materials (Basel) ; 16(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37687758

RESUMEN

Within the automotive field, there has been an increasing amount of global attention toward the usability of combustion-independent electric vehicles (EVs). Once considered an overly ambitious and costly venture, the popularity and practicality of EVs have been gradually increasing due to the usage of Li-ion batteries (LIBs). Although the topic of LIBs has been extensively covered, there has not yet been a review that covers the current advancements of LIBs from economic, industrial, and technical perspectives. Specific overviews on aspects such as international policy changes, the implementation of cloud-based systems with deep learning capabilities, and advanced EV-based LIB electrode materials are discussed. Recommendations to address the current challenges in the EV-based LIB market are discussed. Furthermore, suggestions for short-term, medium-term, and long-term goals that the LIB-EV industry should follow are provided to ensure its success in the near future. Based on this literature review, it can be suggested that EV-based LIBs will continue to be a hot topic in the years to come and that there is still a large amount of room for their overall advancement.

9.
Neuropathol Appl Neurobiol ; 49(5): e12937, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37740653

RESUMEN

OBJECTIVE: Mesial Temporal Lobe Epilepsy-associated Hippocampal Sclerosis (MTLE-HS) is a syndrome associated with various aetiologies. We previously identified CD34-positive extravascular stellate cells (CD34+ cells) possibly related to BRAFV600E oncogenic variant in a subset of MTLE-HS. We aimed to identify the BRAFV600E oncogenic variants and characterise the CD34+ cells. METHODS: We analysed BRAFV600E oncogenic variant by digital droplet Polymerase Chain Reaction in 53 MTLE-HS samples (25 with CD34+ cells) and nine non-expansive neocortical lesions resected during epilepsy surgery (five with CD34+ cells). Ex vivo multi-electrode array recording, immunolabelling, methylation microarray and single nuclei RNAseq were performed on BRAFwildtype MTLE-HS and BRAFV600E mutant non-expansive lesion of hippocampus and/or neocortex. RESULTS: We identified a BRAFV600E oncogenic variant in five MTLE-HS samples with CD34+ cells (19%) and in five neocortical samples with CD34+ cells (100%). Single nuclei RNAseq of resected samples revealed two unique clusters of abnormal cells (including CD34+ cells) associated with senescence and oligodendrocyte development in both hippocampal and neocortical BRAFV600E mutant samples. The co-expression of the oncogene-induced senescence marker p16INK4A and the outer subventricular zone radial glia progenitor marker HOPX in CD34+ cells was confirmed by multiplex immunostaining. Pseudotime analysis showed that abnormal cells share a common lineage from progenitors to myelinating oligodendrocytes. Epilepsy surgery led to seizure freedom in eight of the 10 patients with BRAF mutant lesions. INTERPRETATION: BRAFV600E underlies a subset of MTLE-HS and epileptogenic non-expansive neocortical focal lesions. Detection of the oncogenic variant may help diagnosis and open perspectives for targeted therapies.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Neocórtex , Humanos , Epilepsia del Lóbulo Temporal/patología , Neocórtex/patología , Proteínas Proto-Oncogénicas B-raf/genética , Hipocampo/patología , Epilepsias Parciales/genética , Epilepsias Parciales/complicaciones , Epilepsias Parciales/patología , Epilepsia/patología , Esclerosis/patología , Imagen por Resonancia Magnética
10.
Seizure ; 111: 151-157, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634353

RESUMEN

BACKGROUND: The study aimed to determine the level of agreement between patients with epilepsy and their proxies when assessing psychiatric comorbidities, sleep disorders, and medication adherence using standardized questionnaires. METHODS: This agreement study is an ancillary analysis of the PRERIES study, a matched case-control study exploring SUDEP risk factors. Controls aged 15 years and older, with active epilepsy or in remission for less than 5 years were recruited between 01/01/2011 and 03/31/2019. An interview was carried out by a trained psychologist on both the patient and a proxy-respondent. During these independent interviews, the following comorbidities were explored: psychiatric comorbidities using the MINI, the STAI- Y2 and NDDI-E scales, sleep disorders with the SDQ-SA and Epworth scales and medication adherence. Level of agreement between patient and their proxy was estimated using Gwet's AC1&2. RESULTS: Among the 107 patient-proxy dyads recruited, proxy respondents were mainly family members (65.4%) or spouses (30.8%). Exploration of present major depression showed excellent agreement at 0.81 [0.65;0.97], as well as exploration of dysthymia at 0.96 [0.61;1]. Suicidal risk evaluation had a lesser agreement at 0.77 [0.60;0.94]. Agreement on anxiety was moderate 0.5 [0.38;0.62]. For sleep disorder, SDQ-SA presented a better agreement than the Epworth questionnaire with respectively 0.73 [0.51;0.95] and 0.45 [0.26;0.63]. For medication adherence, the overall agreement rate was excellent (0.90 [0.78;1]). CONCLUSION: Exploration of potential risk factors through families can give valuable and relatively robust information, especially if the respondent lives with the patient, and should be retrieved, when possible, in usual clinical setting.

11.
Eur J Neurol ; 30(12): 3692-3702, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650365

RESUMEN

BACKGROUND AND PURPOSE: The specific effects of antiseizure medications (ASMs) on cognition are a rich field of study, with many ongoing questions. The aim of this study was to evaluate these effects in a homogeneous group of patients with epilepsy to guide clinicians to choose the most appropriate medications. METHODS: We retrospectively identified 287 refractory patients with medial temporal lobe epilepsy associated with hippocampal sclerosis. Scores measuring general cognition (global, verbal and performance IQ), working memory, episodic memory, executive functions, and language abilities were correlated with ASM type, number, dosage and generation (old vs. new). We also assessed non-modifiable factors affecting cognition, such as demographics and epilepsy-related factors. RESULTS: Key parameters were total number of ASMs and specific medications, especially topiramate (TPM) and sodium valproate (VPA). Four cognitive profiles of the ASMs were identified: (i) drugs with an overall detrimental effect on cognition (TPM, VPA); (ii) drugs with negative effects on specific areas: verbal memory and language skills (carbamazepine), and language functions (zonisamide); (iii) drugs affecting a single function in a specific and limited area: visual denomination (oxcarbazepine, lacosamide); and (iv) drugs without documented cognitive side effects. Non-modifiable factors such as age at testing, age at seizure onset, and history of febrile seizures also influenced cognition and were notably influenced by total number of ASMs. CONCLUSION: We conclude that ASMs significantly impact cognition. Key parameters were total number of ASMs and specific medications, especially TPM and VPA. These results should lead to a reduction in the number of drugs received and the avoidance of medications with unfavorable cognitive profiles.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Anticonvulsivantes/efectos adversos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Estudios Retrospectivos , Fructosa/efectos adversos , Topiramato/uso terapéutico , Topiramato/farmacología , Epilepsia/tratamiento farmacológico , Cognición , Memoria a Corto Plazo
12.
Commun Biol ; 6(1): 730, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454150

RESUMEN

How do attention and consciousness interact in the human brain? Rival theories of consciousness disagree on the role of fronto-parietal attentional networks in conscious perception. We recorded neural activity from 727 intracerebral contacts in 13 epileptic patients, while they detected near-threshold targets preceded by attentional cues. Clustering revealed three neural patterns: first, attention-enhanced conscious report accompanied sustained right-hemisphere fronto-temporal activity in networks connected by the superior longitudinal fasciculus (SLF) II-III, and late accumulation of activity (>300 ms post-target) in bilateral dorso-prefrontal and right-hemisphere orbitofrontal cortex (SLF I-III). Second, attentional reorienting affected conscious report through early, sustained activity in a right-hemisphere network (SLF III). Third, conscious report accompanied left-hemisphere dorsolateral-prefrontal activity. Task modeling with recurrent neural networks revealed multiple clusters matching the identified brain clusters, elucidating the causal relationship between clusters in conscious perception of near-threshold targets. Thus, distinct, hemisphere-asymmetric fronto-parietal networks support attentional gain and reorienting in shaping human conscious experience.


Asunto(s)
Mapeo Encefálico , Estado de Conciencia , Humanos , Atención , Encéfalo , Lóbulo Frontal
13.
Curr Biol ; 33(9): 1836-1843.e6, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060906

RESUMEN

Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.


Asunto(s)
Memoria Episódica , Animales , Humanos , Recuerdo Mental , Ritmo Teta , Hipocampo , Memoria a Largo Plazo
14.
Neuropsychologia ; 185: 108558, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37061128

RESUMEN

Humor plays a prominent role in our lives. Thus, understanding the cognitive and neural mechanisms of humor is particularly important. Previous studies that investigated neural substrates of humor used functional MRI and to a lesser extent EEG. In the present study, we conducted intracranial recording in human patients, enabling us to obtain the signal with high temporal precision from within specific brain locations. Our analysis focused on the temporal lobe and the surrounding areas, the temporal lobe was most densely covered in our recording. Thirteen patients watched a fragment of a Charlie Chaplin movie. An independent group of healthy participants rated the same movie fragment, helping us to identify the most funny and the least funny frames of the movie. We compared neural activity occurring during the most funny and least funny frames across frequencies in the range of 1-170 Hz. The most funny compared to least funny parts of the movie were associated with activity modulation in the broadband high-gamma (70-170 Hz; mostly activation) and to a lesser extent gamma band (40-69Hz; activation) and low frequencies (1-12 Hz, delta, theta, alpha bands; mostly deactivation). With regard to regional specificity, we found three types of brain areas: (I) temporal pole, middle and inferior temporal gyrus (both anterior and posterior) in which there was both activation in the high-gamma/gamma bands and deactivation in low frequencies; (II) ventral part of the temporal lobe such as the fusiform gyrus, in which there was mostly deactivation the low frequencies; (III) posterior temporal cortex and its environment, such as the middle occipital and the temporo-parietal junction, in which there was activation in the high-gamma/gamma band. Overall, our results suggest that humor appreciation might be achieved by neural activity across the frequency spectrum.


Asunto(s)
Mapeo Encefálico , Películas Cinematográficas , Humanos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Imagen por Resonancia Magnética/métodos
15.
Epilepsia ; 64(6): 1444-1457, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37039049

RESUMEN

New onset refractory status epilepticus (NORSE), including its subtype with a preceding febrile illness known as febrile infection-related epilepsy syndrome (FIRES), is one of the most severe forms of status epilepticus. The exact causes of NORSE are currently unknown, and there is so far no disease-specific therapy. Identifying the underlying pathophysiology and discovering specific biomarkers, whether immunologic, infectious, genetic, or other, may help physicians in the management of patients with NORSE. A broad spectrum of biomarkers has been proposed for status epilepticus patients, some of which were evaluated for patients with NORSE. Nonetheless, none has been validated, due to significant variabilities in study cohorts, collected biospecimens, applied analytical methods, and defined outcome endpoints, and to small sample sizes. The NORSE Institute established an open NORSE/FIRES biorepository for health-related data and biological samples allowing the collection of biospecimens worldwide, promoting multicenter research and sharing of data and specimens. Here, we suggest standard operating procedures for biospecimen collection and biobanking in this rare condition. We also propose criteria for the appropriate use of previously collected biospecimens. We predict that the widespread use of standardized procedures will reduce heterogeneity, facilitate the future identification of validated biomarkers for NORSE, and provide a better understanding of the pathophysiology and best clinical management for these patients.


Asunto(s)
Epilepsia Refractaria , Encefalitis , Estado Epiléptico , Humanos , Bancos de Muestras Biológicas , Estado Epiléptico/tratamiento farmacológico , Convulsiones/complicaciones , Epilepsia Refractaria/terapia , Encefalitis/complicaciones , Biomarcadores
16.
Ultrasound Med Biol ; 49(5): 1327-1336, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878831

RESUMEN

OBJECTIVE: It is unknown whether ultrasound-induced blood-brain barrier (BBB) disruption can promote epileptogenesis and how BBB integrity changes over time after sonication. METHODS: To gain more insight into the safety profile of ultrasound (US)-induced BBB opening, we determined BBB permeability as well as histological modifications in C57BL/6 adult control mice and in the kainate (KA) model for mesial temporal lobe epilepsy in mice after sonication with low-intensity pulsed ultrasound (LIPU). Microglial and astroglial changes in ipsilateral hippocampus were examined at different time points following BBB disruption by respectively analyzing Iba1 and glial fibrillary acidic protein immunoreactivity. Using intracerebral EEG recordings, we further studied the possible electrophysiological repercussions of a repeated disrupted BBB for seizure generation in nine non-epileptic mice. RESULTS: LIPU-induced BBB opening led to transient albumin extravasation and reversible mild astrogliosis, but not to microglial activation in the hippocampus of non-epileptic mice. In KA mice, the transient albumin extravasation into the hippocampus mediated by LIPU-induced BBB opening did not aggravate inflammatory processes and histologic changes that characterize the hippocampal sclerosis. Three LIPU-induced BBB opening did not induce epileptogenicity in non-epileptic mice implanted with depth EEG electrodes. CONCLUSION: Our experiments in mice provide persuasive evidence of the safety of LIPU-induced BBB opening as a therapeutic modality for neurological diseases.


Asunto(s)
Barrera Hematoencefálica , Epilepsia del Lóbulo Temporal , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Epilepsia del Lóbulo Temporal/terapia , Epilepsia del Lóbulo Temporal/inducido químicamente , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Albúminas , Hipocampo
17.
Ann Neurol ; 94(1): 75-90, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36871188

RESUMEN

OBJECTIVE: The objective of this study was to investigate inflammation using cerebrospinal fluid (CSF) and serum cytokines/chemokines in patients with new-onset refractory status epilepticus (NORSE) to better understand the pathophysiology of NORSE and its consequences. METHODS: Patients with NORSE (n = 61, including n = 51 cryptogenic), including its subtype with prior fever known as febrile infection-related epilepsy syndrome (FIRES), were compared with patients with other refractory status epilepticus (RSE; n = 37), and control patients without SE (n = 52). We measured 12 cytokines/chemokines in serum or CSF samples using multiplexed fluorescent bead-based immunoassay detection. Cytokine levels were compared between patients with and without SE, and between the 51 patients with cryptogenic NORSE (cNORSE) and the 47 patients with a known-etiology RSE (NORSE n = 10, other RSE n = 37), and correlated with outcomes. RESULTS: A significant increase of IL-6, TNF-α, CXCL8/IL-8, CCL2, MIP-1α, and IL-12p70 pro-inflammatory cytokines/chemokines was observed in patients with SE compared with patients without SE, in serum and CSF. Serum innate immunity pro-inflammatory cytokines/chemokines (CXCL8, CCL2, and MIP-1α) were significantly higher in patients with cNORSE compared to non-cryptogenic RSE. Patients with NORSE with elevated innate immunity serum and CSF cytokine/chemokine levels had worse outcomes at discharge and at several months after the SE ended. INTERPRETATION: We identified significant differences in innate immunity serum and CSF cytokine/chemokine profiles between patients with cNORSE and non-cryptogenic RSE. The elevation of innate immunity pro-inflammatory cytokines in patients with NORSE correlated with worse short- and long-term outcomes. These findings highlight the involvement of innate immunity-related inflammation, including peripherally, and possibly of neutrophil-related immunity in cNORSE pathogenesis and suggest the importance of utilizing specific anti-inflammatory interventions. ANN NEUROL 2023;94:75-90.


Asunto(s)
Citocinas , Estado Epiléptico , Humanos , Citocinas/líquido cefalorraquídeo , Quimiocina CCL3 , Estado Epiléptico/diagnóstico , Quimiocinas , Inflamación/complicaciones
19.
Biomedicines ; 11(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831042

RESUMEN

INTRODUCTION: Autoimmune encephalitis (AE) diagnosis and follow-up remain challenging. Brain 18F-fluoro-deoxy-glucose positron emission tomography (FDG PET) has shown promising results in AE. Our aim was to investigate FDG PET alterations in AE, according to antibody subtype. METHODS: We retrospectively included patients with available FDG PET and seropositive AE diagnosed in our center between 2015 and 2020. Brain PET Z-score maps (relative to age matched controls) were analyzed, considering metabolic changes significant if |Z-score| ≥ 2. RESULTS: Forty-six patients were included (49.4 yrs [18; 81]): 13 with GAD autoantibodies, 11 with anti-LGI1, 9 with NMDAR, 5 with CASPR2, and 8 with other antibodies. Brain PET was abnormal in 98% of patients versus 53% for MRI. The most frequent abnormalities were medial temporal lobe (MTL) and/or striatum hypermetabolism (52% and 43% respectively), cortical hypometabolism (78%), and cerebellum abnormalities (70%). LGI1 AE tended to have more frequent MTL hypermetabolism. NMDAR AE was prone to widespread cortical hypometabolism. Fewer abnormalities were observed in GAD AE. Striatum hypermetabolism was more frequent in patients treated for less than 1 month (p = 0.014), suggesting a relation to disease activity. CONCLUSION: FDG PET could serve as an imaging biomarker for early diagnosis and follow-up in AE.

20.
eNeuro ; 10(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36849262

RESUMEN

Autoimmune encephalitis (AIE) associated with antibodies directed against the leucine-rich glioma inactivated 1 (LGI1) protein is the second most common AIE and is responsible for deleterious neocortical and limbic epileptic seizures. Previous studies demonstrated a pathogenic role of anti-LGI1 antibodies via alterations in the expression and function of Kv1 channels and AMPA receptors. However, the causal link between antibodies and epileptic seizures has never been demonstrated. Here, we attempted to determine the role of human anti-LGI1 autoantibodies in the genesis of seizures by analyzing the impact of their intracerebral injection in rodents. Acute and chronic injections were performed in rats and mice in the hippocampus and primary motor cortex, the two main brain regions affected by the disease. Acute infusion of CSF or serum IgG of anti-LGI1 AIE patients did not lead to the emergence of epileptic activities, as assessed by multisite electrophysiological recordings over a 10 h period after injection. A chronic 14 d injection, coupled with continuous video-EEG monitoring, was not more effective. Overall, these results demonstrate that acute and chronic injections of CSF or purified IgG from LGI1 patients are not able to generate epileptic activity by themselves in the different animal models tested.


Asunto(s)
Epilepsia , Péptidos y Proteínas de Señalización Intracelular , Humanos , Ratas , Ratones , Animales , Leucina , Roedores , Convulsiones/inducido químicamente , Epilepsia/inducido químicamente , Hipocampo , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...