Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 181: 422-430, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29426535

RESUMEN

Stannic oxide nanoparticles and various compositions of SnO2@rGO (reduced graphene oxide) nanohybrids were synthesized by a facile hydrothermal method and utilized as chemiresistive methane gas sensors. To characterize the synthesized nanohybrids, BET (Brunauer-Emmett-Teller), XRD, FESEM, TEM, FTIR, and Raman techniques were used. Sensing elements were tested using a U-tube flow chamber with temperature control. To obtain the best sensor performance, i.e., the highest signal and the fastest response and recovery times, the sensing element composition, operating temperature, and gas flow rate were optimized. The highest response (change in resistance) of 47.6% for 1000 ± 5ppm methane was obtained with the SnO2@rGO1% nanohybrid at 150°C and a flow rate of 160sccm; the response and recovery times were 61s and 5min, respectively. A sensing mechanism was suggested, based on the experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...