Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 269(Pt 2): 132160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718995

RESUMEN

Environmentally friendly polymers such as cellulose acetate (CA) and chitosan (CS) were used to obtain electrospun fibers for Cu2+, Pb2+, and Mo6+ capture. The solvents dichloromethane (DCM) and dimethylformamide (DMF) allowed the development of a surface area of 148 m2 g-1 for CA fibers and 113 m2 g-1 for cellulose acetate/chitosan (CA/CS) fibers. The fibers were characterized by IR-DRIFT, SEM, TEM, CO2 sorption isotherms at 273 K, Hg porosimetry, TGA, stress-strain tests, and XPS. The CA/CS fibers had a higher adsorption capacity than CA fibers without affecting their physicochemical properties. The capture capacity reached 102 mg g-1 for Cu2+, 49.3 mg g-1 for Pb2+, and 13.1 mg g-1 for Mo6+. Furthermore, optimal pH, adsorption times qt, and C0 were studied for the evaluation of kinetic models and adsorption isotherms. Finally, a proposal for adsorbate-adsorbent interactions is presented as a possible capture mechanism where, in the case of Mo6+, a computational study is presented. The results demonstrate the potential to evaluate the fibers in tailings wastewater from copper mining.


Asunto(s)
Celulosa , Quitosano , Cobre , Plomo , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Celulosa/química , Celulosa/análogos & derivados , Cobre/química , Aguas Residuales/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Plomo/química , Plomo/aislamiento & purificación , Purificación del Agua/métodos , Cinética , Concentración de Iones de Hidrógeno , Biopolímeros/química
2.
Nanoscale Adv ; 6(6): 1648-1652, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38482040

RESUMEN

Multilayer graphene (MLG), obtained by mild sonication of graphite in NMP, was functionalised via 1,3-dipolar cycloaddition with azomethine ylides generated by thermal 1,2-prototropy from various imino esters. The microwave-assisted functionalisation took place in five hours at 100 °C. The resulting MLG, containing substituted proline-based amine functional groups, was characterized using XPS and showed a nitrogen loading three times that obtained for the same transformation performed for five days using convection-assisted heating. The preparation of the imino ester containing a bipyridine unit at the arylidene position allowed for the preparation of the corresponding functionalised MLG, which incorporated the ruthenium atom to achieve a heterogeneous MLG-Ru complex. This supported complex was tested, as a proof of concept, as a photocatalyst of the aerobic oxidative hydroxylation of 4-methoxyphenylboronic acid.

3.
Materials (Basel) ; 14(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34772045

RESUMEN

The production of hydrogen from liquid organic hydrogen carrier molecules stands up as a promising option over the conventional hydrogen storage methods. In this study, we explore the potential of formic acid as a convenient hydrogen carrier. For that, soft-biomass-derived carbon-supported Pd catalysts were synthesized by a H3PO4-assisted hydrothermal carbonization method. To assess the impact of the properties of the support in the catalytic performance towards the dehydrogenation of formic acid, three different strategies were employed: (i) incorporation of nitrogen functional groups; (ii) modification of the surface chemistry by performing a thermal treatment at high temperatures (i.e., 900 °C); and (iii) combination on both thermal treatment and nitrogen functionalization. It was observed that the modification of the carbon support with these strategies resulted in catalysts with enhanced performance and outstanding stability even after six consecutive reaction cycles, thus highlighting the important effect of tailoring the properties of the support.

4.
ACS Omega ; 5(48): 31323-31331, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33324843

RESUMEN

In this work, we reported the preparation of composites based on titania (TiO2) and Zeolite Socony Mobil-5 (ZSM-5) nanozeolite, following two approaches (i.e., incorporating the presynthesized zeolite in the synthesis medium of TiO2 and incorporating presynthesized TiO2 in the synthesis medium of ZSM-5). The materials synthesized were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectrometry analysis, and their photocatalytic activities were assessed in the oxidation of propene in the gas phase. It was observed that the synthesis methodology affects the final properties of the composite, which ultimately affected their photocatalytic performance in the studied application. It was found that the Nano-ZSM5/TiO2 composite was the most active among the investigated samples, which was attributed to the intimate contact between the two components of the composite, the preserved properties of the photocatalytic active phase in the final material, and the positive contribution of the nanozeolite by increasing the local concentration of propene.

5.
Front Chem ; 8: 359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411676

RESUMEN

Various carbon materials were used as support of polyvinylpyrrolidone (PVP)-capped Pd nanoparticles for the synthesis of catalysts for the production of hydrogen from formic acid dehydrogenation reaction. Among investigated, MWCNT-supported catalysts were the most promising, with a TOF of 1430 h-1 at 80°C. The presence of PVP was shown to play a positive role by increasing the hydrophilicity of the materials and enhancing the interface contact between the reactant molecules and the catalytic active sites.

6.
Sci Rep ; 9(1): 15675, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666596

RESUMEN

Formic acid (FA; HCOOH) is one of the most promising candidates for the storage of hydrogen (H2). Herein, we report a H2 storage/production system based on the hydrogenation of CO2 and dehydrogenation of FA, using a nanostructured heterogeneous catalyst. Pd1Ag2 nanoparticles with an average size of 2.8 nm were encapsulated within a zeolitic imidazolate framework (ZIF-8) having a core-shell structure (ZIF-8@Pd1Ag2@ZIF-8). This composite displayed high activity and stability during both the hydrogenation of CO2 to produce FA and the dehydrogenation of FA into H2 and CO2. This improved performance is attributed to the use of ultrafine Pd1Ag2 nanoparticles as well as the spatial regulation of the nanoparticles within the reaction field. This study suggests a new strategy for controlling the spatial distribution of metal nanoparticles within MOFs so as to fine-tune the catalytic activity and selectivity of ZIF-8@metal nanoparticles@ZIF-8 catalysts.

7.
Top Curr Chem (Cham) ; 377(5): 27, 2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31559502

RESUMEN

The photocatalytic dehydrogenation of formic acid has recently emerged as an outstanding alternative to the traditional thermal catalysts widely applied in this reaction. The utilization of photocatalytic processes for the production of hydrogen is an appealing strategy that perfectly matches with the idea of a green and sustainable future energy scenario. However, it sounds easier than it is, and great efforts have been needed to design and develop highly efficient photocatalysts for the production of hydrogen from formic acid. In this work, some of the most representative strategies adopted for this application are reviewed, paying particular attention to systems based on TiO2, CdS and C3N4.


Asunto(s)
Formiatos/química , Hidrógeno/química , Catálisis , Hidrogenación , Tamaño de la Partícula , Procesos Fotoquímicos
8.
Chem Asian J ; 12(8): 860-867, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28247487

RESUMEN

Pd nanoparticles (NPs) supported on Ti-doped graphitic carbon nitride (g-C3 N4 ) were synthesized by a deposition-precipitation route and a subsequent reduction with NaBH4 . The features of the NPs were studied by XRD, TEM, FTIR, XPS, EXAFS and N2 -physisorption measurements. It was found that the NPs had an average size of 2.9 nm and presented a high dispersion on the surface of Ti-doped g-C3 N4 . Compared to Pd loaded on pristine g-C3 N4 , the Pd NPs supported on Ti-doped g-C3 N4 exhibited a high catalytic activity in formic acid dehydrogenation in water at room temperature. The enhanced activity could be attributed to the small Pd NPs size, as well as the strong interaction between Pd NPs and Ti-doped g-C3 N4 .

9.
Langmuir ; 32(46): 12110-12118, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27788005

RESUMEN

Palladium nanoparticles (Pd NPs) were synthesized by the reduction-by-solvent method using polyvinylpirrolidone (PVP) as capping agent. The nonstatic interaction between PVP and the metallic surface may change the properties of the NPs due to the different possible interactions, through either the O or N atoms of the PVP. In order to analyze these effects and their repercussions in their catalytic performance, Pd NPs with various PVP/Pd molar ratios (1, 10, and 20) were prepared, deposited on silica, and tested in the formic acid decomposition reaction. The catalytic tests were conducted using catalysts prepared by loading NPs with three different time lapses between their purification and their deposition on the silica support (1 day, 1 month, and 6 months). CO adsorption, FTIR spectroscopy, XPS, and TEM characterization were used to determine the accessibility of the Pd NPs surface sites, the electronic state of Pd, and the average NPs size, respectively. The H2 production from the formic acid decomposition reaction has a strong dependence on the Pd surface features, which in turn are related to the NPs aging time due to the progressive removal of the PVP.

10.
Chem Asian J ; 11(17): 2377-81, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27555123

RESUMEN

A straightforward aqueous synthesis of MoO3-x nanoparticles at room temperature was developed by using (NH4 )6 Mo7 O24 ⋅4 H2 O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as-prepared products are nanoparticles with diameters of 90-180 nm. The diffuse reflectance UV-visible-near-IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible-light and near-infrared region, such nanostructures exhibit an enhancement of activity toward visible-light catalytic hydrogen generation. MoO3-x nanoparticles synthesized with a molar ratio of Mo(VI) /Mo(V) 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as-prepared plasmonic MoO3-x nanoparticles, which reveals its potential application in visible-light catalytic hydrogen production.

11.
ChemSusChem ; 6(8): 1467-77, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23821518

RESUMEN

A high percentage of hydrocarbon (HC) emissions from gasoline vehicles occur during the cold-start period. Among the alternatives proposed to reduce these HC emissions, the use of zeolites before the three-way catalyst (TWC) is thought to be very effective. Zeolites are the preferred adsorbents for this application; however, to avoid high pressure drops, supported zeolites are needed. In this work, two coating methods (dip-coating and in situ crystallization) are optimized to prepare BETA zeolite thin films supported on honeycomb monoliths with tunable properties. The important effect of the density of the thin film in the final performance as a HC trap is demonstrated. A highly effective HC trap is prepared showing 100% toluene retention, accomplishing the desired performance as a HC trap, desorbing propene at temperatures close to 300 °C, and remaining stable after cycling. The use of this material before the TWC is very promising, and works towards achieving the sustainability and environmental protection goals.


Asunto(s)
Frío , Hidrocarburos/química , Emisiones de Vehículos , Zeolitas/química , Adsorción , Cristalización , Gasolina , Tecnología Química Verde
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA