Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zoolog Sci ; 35(6): 548-552, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30520361

RESUMEN

The infection caused by a kinetoplastid flagellate, Azumiobodo hoyamushi, in an ascidian, Halocynthia roretzi, results in softening of the tunic, and finally death. This disease is usually recognized using palpation of the softening tunic, and A. hoyamushi infection is detectable using microscopy or PCR amplification of specific gene fragments. The present study is the first quantitative evaluation of the symptoms of soft tunic syndrome by measuring the amount of bending (bending) and the peak force required to pierce the tunic (force). There was a strong correlation between bending and force. Correlation analyses among other parameters (ascidian total weight, tunic thickness, and tunic water content) indicated that larger ascidians had harder and thicker tunics with a higher water content. As compared to the tunic of healthy individuals, softened tunic was thinner and had lower water content. Infected tunics thus possibly lose water and become softer and thinner. Mechanisms for maintaining the appropriate water level content may be crucial for preventing tunic softening.


Asunto(s)
Estructuras Animales/fisiología , Kinetoplastida/fisiología , Urocordados/microbiología , Urocordados/fisiología , Animales , Fenómenos Biomecánicos , Interacciones Huésped-Patógeno
2.
Dis Aquat Organ ; 129(3): 207-214, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30154281

RESUMEN

Azumiobodo hoyamushi, a kinetoplastid flagellate, is the causative agent of soft tunic syndrome, an infectious disease of the edible ascidian Halocynthia roretzi. The flagellate is thought to invade the tunic matrix via a damaged area of the tunic on the siphon wall. We hypothesized that the flagellate locates the tunic entry site by a chemotactic response to soluble substances diffused from the host ascidians. To investigate this hypothesis, we examined whether the flagellate shows a chemotactic response to tissue extracts (tunic and other tissues) from the host ascidian H. roretzi. We tested extracts from 5 tissues as well as hemolymph. Only the tunic extract showed significant positive chemotactic activity, and the activity decreased with increasing dilution. Furthermore, autoclaved tunic extract, extracts from diseased individuals, and extract from the styelid ascidian Styela clava also had chemotactic activity, although the activities were lower than that of tunic extract from healthy H. roretzi. Ultrafiltration of the tunic extract through a 3 kDa cutoff membrane completely abrogated the activity; the ultrafiltration retentate still showed activity. Thus, the soluble factors that attract the flagellate are present exclusively in the tunic extract, and the chemotactic factors are larger than 3 kDa. Our experiments also suggested that the tunic extract contains both heat-stable and heat-labile factors. We conclude that the flagellate locates the tunic entry site by chemotaxis toward soluble factors that diffuse from a damaged area of the tunic on the siphon wall.


Asunto(s)
Kinetoplastida/efectos de los fármacos , Kinetoplastida/fisiología , Extractos de Tejidos/química , Urocordados/química , Urocordados/parasitología , Animales , Quimiotaxis , Interacciones Huésped-Parásitos , Humanos , Integumento Común
3.
PLoS One ; 11(10): e0165424, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27788206

RESUMEN

Erythrocytic inclusion body syndrome (EIBS) causes mass mortality in farmed salmonid fish, including the coho salmon, Onchorhynchus kisutchi, and chinook salmon, O. tshawytscha. The causative agent of the disease is a virus with an icosahedral virion structure, but this virus has not been characterized at the molecular level. In this study, we sequenced the genome of a virus purified from EIBS-affected coho salmon. The virus has 10 dsRNA genomic segments (L1, L2, L3, M1, M2, M3, S1, S2, S3, and S4), which closely resembles the genomic organization of piscine orthoreovirus (PRV), the causative agent of heart and skeletal inflammation (HSMI) in Atlantic salmon and HSMI-like disease in coho salmon. The genomic segments of the novel virus contain at least 10 open reading frames (ORFs): lambda 1 (λ1), λ2, λ3, mu 1 (µ1), µ2, µNS, sigma 1 (σ1), σ2, σ3, and σNS. An additional ORF encoding a 12.6-kDa protein (homologue of PRV p13) occurs in the same genomic segment as σ3. Phylogenetic analyses based on S1 and λ3 suggest that this novel virus is closely related to PRV, but distinctly different. Therefore, we designated the new virus 'piscine orthoreovirus 2' (PRV-2). Reverse transcription-quantitative real-time PCR revealed a significant increase in PRV-2 RNA in fish blood after the artificial infection of EIBS-naïve fish but not in that of fish that had recovered from EIBS. The degree of anemia in each fish increased as the PRV-2 RNA increased during an epizootic season of EIBS on an inland coho salmon farm. These results indicate that PRV-2 is the probable causative agent of EIBS in coho salmon, and that the host acquires immunity to reinfection with this virus. Further research is required to determine the host range of PRV species and the relationship between EIBS and HSMI in salmonid fish.


Asunto(s)
Enfermedades de los Peces/virología , Genómica , Oncorhynchus/virología , Orthoreovirus/genética , Orthoreovirus/fisiología , Animales , Oncorhynchus/sangre , ARN Viral/genética
4.
Dis Aquat Organ ; 118(2): 153-8, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26912045

RESUMEN

Azumiobodo hoyamushi, the causative agent of soft tunic syndrome, was likely introduced to farming sites of the edible ascidian Halocynthia roretzi via ascidian spat. The source of infection is thought to be cysts of A. hoyamushi that reside in the substrates on which the ascidian spat are attached, but not the spat themselves. Thus, there is a need to develop methods to prevent contamination of the substrates with A. hoyamushi during seed production of the ascidian. We evaluated the protozoacidal effects of sodium hypochlorite and povidone-iodine against the flagellate and temporary cyst forms of A. hoyamushi. Additionally, we evaluated the effects of these disinfectants on the development of fertilized ascidian eggs. The flagellate form of A. hoyamushi was completely inactivated by povidone-iodine (5 ppm, 1 min) and sodium hypochlorite (1 ppm, 1 min). The temporary cysts of A. hoyamushi were completely inactivated by both disinfectants (5 ppm, 1 min). Disinfection with 50 ppm povidone-iodine for 15 min or 5 ppm sodium hypochlorite for 15 min had no effect on ascidian embryogenesis. Thus, horizontal transmission of A. hoyamushi via the substrates can be efficiently prevented by disinfecting ascidian eggs or tools used for spawning with povidone-iodine baths ranging from 5 ppm for 1 min to 50 ppm for 15 min without any side effects.


Asunto(s)
Desinfección/métodos , Kinetoplastida/efectos de los fármacos , Óvulo/parasitología , Povidona Yodada/farmacología , Urocordados/parasitología , Animales , Antiinfecciosos Locales/farmacología , Kinetoplastida/fisiología
5.
Dis Aquat Organ ; 115(3): 253-62, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26290510

RESUMEN

Soft tunic syndrome in the edible ascidian Halocynthia roretzi is caused by the kinetoplastid flagellate Azumiobodo hoyamushi, which was found to assume a fusiform cell form with 2 flagella in axenic, pure culture. When the flagellate form was incubated in sterilized artificial seawater (pH 8.4), some of the cells became cyst-like and adhered to the bottom of the culture plate. The cyst-like forms were spherical or cuboidal, and each had 2 flagella encapsulated in its cytoplasm. Encystment was also induced in culture medium alkalified to the pH of seawater (8.4) but not in unmodified (pH 7.2) or acidified media (pH 6.4). More than 95% of the cyst-like cells converted to the flagellate form within 1 d following transfer to seawater containing ascidian tunic extracts from host ascidians. The cyst-like cells were able to survive in seawater with no added nutrients for up to 2 wk at 20°C and for a few months at 5 to 15°C. The survival period in seawater depended on temperature: some cyst-like cells survived 3 mo at 10°C, and ca. 95% of these converted to flagellate forms in seawater containing tunic extracts. Thus, A. hoyamushi is able to persist under adverse conditions in a cyst-like form able to adhere to organic and inorganic substrata for protracted periods of time.


Asunto(s)
Kinetoplastida/fisiología , Urocordados/parasitología , Animales , Interacciones Huésped-Parásitos , Kinetoplastida/ultraestructura , Longevidad , Temperatura
6.
Dis Aquat Organ ; 109(3): 251-6, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24991851

RESUMEN

The infectious kinetoplastid Azumiobodo hoyamushi causes 'soft tunic syndrome', a serious problem in aquaculture of the edible ascidian Halocynthia roretzi. Infection tests using diseased tunics demonstrated that juvenile (0.8 yr old) individuals never developed soft tunic syndrome, but all individuals in the other age groups (1.8, 2.8, and 3.8 yr old) showed the disease symptoms. In the infection tests, tunic softening was first observed at the tunic around siphons. Based on ultrastructural observation of the inner wall of the branchial siphon, the tunic lining the inner wall in juveniles (0.5 yr old) was completely covered with cuticle, which had a dense structure to prevent bacterial and protist invasion. In contrast, the tunic was often partly damaged and not covered with cuticle in healthy adults (≥2.5 yr old). The damaged tunic in the siphon wall could be an entrance for A. hoyamushi into the tunic of adult hosts.


Asunto(s)
Kinetoplastida/fisiología , Urocordados/parasitología , Animales , Interacciones Huésped-Parásitos , Integumento Común
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...