Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 1113, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535387

RESUMEN

In the original version of this Article, extraneous text not belonging to the article was accidentally appended to end of the first paragraph of the discussion. This error has now been corrected in both the PDF and HTML versions of the Article.

2.
Biosci Rep ; 38(1)2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29298880

RESUMEN

The high proliferation rate of tumor cells demands high energy and metabolites that are sustained by a high glycolytic flux known as the 'Warburg effect'. The activation and further metabolism of glucose is initiated by hexokinase, a focal point of metabolic regulation. The human hexokinase 2 (HK2) is overexpressed in all aggressive tumors and predominantly found on the outer mitochondrial membrane, where interactions through its N-terminus initiates and maintains tumorigenesis. Here, we report the structure of HK2 in complex with glucose and glucose-6-phosphate (G6P). Structural and biochemical characterization of the mitochondrial conformation reveals higher conformational stability and slow protein unfolding rate (ku) compared with the cytosolic conformation. Despite the active site similarity of all human hexokinases, the N-domain of HK2 is catalytically active but not in hexokinase 1 and 3. Helix-α13 that protrudes out of the N-domain to link it to the C-domain of HK2 is found to be important in maintaining the catalytic activity of the N-half. In addition, the N-domain of HK2 regulates the stability of the whole enzyme in contrast with the C-domain. Glucose binding enhanced the stability of the wild-type (WT) enzyme and the single mutant D657A of the C-domain, but it did not increase the stability of the D209A mutant of the N-domain. The interaction of HK2 with the mitochondria through its N-half is proposed to facilitate higher stability on the mitochondria. The identification of structural and biochemical differences between HK2 and other human hexokinase isozymes could potentially be used in the development of new anticancer therapies.


Asunto(s)
Glucosa-6-Fosfato/química , Glucosa/metabolismo , Hexoquinasa/química , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Catálisis , Dominio Catalítico , Glucosa/química , Hexoquinasa/genética , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Conformación Molecular , Mutación , Conformación Proteica , Termodinámica
3.
Nat Commun ; 8(1): 2281, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273753

RESUMEN

Hundreds of non-proteinogenic (np) amino acids (AA) are found in plants and can in principle enter human protein synthesis through foods. While aminoacyl-tRNA synthetase (AARS) editing potentially provides a mechanism to reject np AAs, some have pathological associations. Co-crystal structures show that vegetable-sourced azetidine-2-carboxylic acid (Aze), a dual mimic of proline and alanine, is activated by both human prolyl- and alanyl-tRNA synthetases. However, it inserts into proteins as proline, with toxic consequences in vivo. Thus, dual mimicry increases odds for mistranslation through evasion of one but not both tRNA synthetase editing systems.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Muerte Celular , Imitación Molecular , ARN de Transferencia/metabolismo , Alanina , Aminoácidos , Células HeLa , Humanos , Prolina , Biosíntesis de Proteínas , Edición de ARN , Verduras
4.
PLoS Genet ; 7(12): e1002399, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22144914

RESUMEN

Charcot-Marie-Tooth disease type 2D (CMT2D) is a dominantly inherited peripheral neuropathy caused by missense mutations in the glycyl-tRNA synthetase gene (GARS). In addition to GARS, mutations in three other tRNA synthetase genes cause similar neuropathies, although the underlying mechanisms are not fully understood. To address this, we generated transgenic mice that ubiquitously over-express wild-type GARS and crossed them to two dominant mouse models of CMT2D to distinguish loss-of-function and gain-of-function mechanisms. Over-expression of wild-type GARS does not improve the neuropathy phenotype in heterozygous Gars mutant mice, as determined by histological, functional, and behavioral tests. Transgenic GARS is able to rescue a pathological point mutation as a homozygote or in complementation tests with a Gars null allele, demonstrating the functionality of the transgene and revealing a recessive loss-of-function component of the point mutation. Missense mutations as transgene-rescued homozygotes or compound heterozygotes have a more severe neuropathy than heterozygotes, indicating that increased dosage of the disease-causing alleles results in a more severe neurological phenotype, even in the presence of a wild-type transgene. We conclude that, although missense mutations of Gars may cause some loss of function, the dominant neuropathy phenotype observed in mice is caused by a dose-dependent gain of function that is not mitigated by over-expression of functional wild-type protein.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Glicina-ARNt Ligasa/genética , Sistema Nervioso Periférico/metabolismo , Animales , Axones/metabolismo , Modelos Animales de Enfermedad , Glicina-ARNt Ligasa/metabolismo , Heterocigoto , Homocigoto , Humanos , Ratones , Ratones Transgénicos , Mutación Missense/genética , Neuronas/metabolismo , Neuronas/patología , Sistema Nervioso Periférico/patología , Células de Schwann/metabolismo , Nervio Ciático/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(7): 2723-8, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21285375

RESUMEN

The toxicity of mistranslation of serine for alanine appears to be universal, and is prevented in part by the editing activities of alanyl-tRNA synthetases (AlaRSs), which remove serine from mischarged tRNA(Ala). The problem of serine mistranslation is so acute that free-standing, genome-encoded fragments of the editing domain of AlaRSs are found throughout evolution. These AlaXps are thought to provide functional redundancy of editing. Indeed, archaeal versions rescue the conditional lethality of bacterial cells harboring an editing-inactive AlaRS. In mammals, AlaXps are encoded by a gene that fuses coding sequences of a homolog of the HSP90 cochaperone p23 (p23(H)) to those of AlaXp, to create p23(H)AlaXp. Not known is whether this fusion protein, or various potential splice variants, are expressed as editing-proficient proteins in mammalian cells. Here we show that both p23(H)AlaXp and AlaXp alternative splice variants can be detected as proteins in mammalian cells. The variant that ablated p23(H) and encoded just AlaXp was active in vitro. In contrast, neither the p23(H)AlaXp fusion protein, nor the mixture of free p23(H) with AlaXp, was active. Further experiments in a mammalian cell-based system showed that RNAi-directed suppression of sequences encoding AlaXp led to a serine-sensitive increase in the accumulation of misfolded proteins. The results demonstrate the dependence of mammalian cell homeostasis on AlaXp, and implicate p23(H) as a cis- and trans-acting regulator of its activity.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Homeostasis/fisiología , Oxidorreductasas Intramoleculares/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Serina/metabolismo , Alanina-ARNt Ligasa/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Clonación Molecular , Cartilla de ADN/genética , Oxidorreductasas Intramoleculares/genética , Ratones , Datos de Secuencia Molecular , Prostaglandina-E Sintasas , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Biochemistry ; 46(11): 3331-7, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17311409

RESUMEN

The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have evolved editing mechanisms to ensure fidelity in this first step of protein synthesis. The amino acid editing site for leucyl- (LeuRS) and isoleucyl- (IleRS) tRNA synthetases reside within homologous CP1 domains. In each case, a threonine-rich peptide and a second conserved GTG region that are separated by about 100 amino acids comprise parts of the hydrolytic editing site. While a number of sites are conserved between these two enzymes and likely confer a commonality to the mechanisms, some positions are idiosyncratic to LeuRS or IleRS. Herein, we provide evidence that a conserved arginine and threonine at respective sites in LeuRS and IleRS diverged to confer amino acid substrate recognition. This site complements other sites in the amino acid binding pocket of the editing active site of Escherichia coli LeuRS, including Thr252 and Val338, which collectively fine-tune amino acid specificity to confer fidelity.


Asunto(s)
Sitios de Unión/efectos de los fármacos , Leucina-ARNt Ligasa/metabolismo , Secuencia de Aminoácidos , Simulación por Computador , Cristalografía por Rayos X , Análisis Mutacional de ADN , Escherichia coli/enzimología , Leucina-ARNt Ligasa/genética , Estructura Terciaria de Proteína , Especificidad por Sustrato/efectos de los fármacos
7.
J Mol Biol ; 367(2): 384-94, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17270210

RESUMEN

Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain. We hypothesized that the RDW peptide was important for interactions of one or more of the LeuRS-RNA complexes. An assortment of X-ray crystallography structures suggests that the RDW peptide is dynamic and forms unique sets of interactions with the aminoacylation and editing complexes. Mutational analysis identified specific sites within the RDW peptide that failed to support protein synthesis activity in complementation experiments. In vitro enzymatic investigations of mutations at Trp445, Arg449, and Arg451 in yeast mitochondrial LeuRS suggested that these sites within the RDW peptide are critical to the aminoacylation complex, but impacted amino acid editing activity to a much less extent. We propose that these highly conserved sites primarily influence productive tRNA interactions in the aminoacylation complex.


Asunto(s)
Leucina-ARNt Ligasa/química , Proteínas Mitocondriales/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Empalme Alternativo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Prueba de Complementación Genética , Leucina-ARNt Ligasa/genética , Leucina-ARNt Ligasa/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Mutación , Péptidos/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Aminoacilación de ARN de Transferencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA