Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37108886

RESUMEN

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the essential food crop for over ninety million people living in drier parts of India and South Africa. Pearl millet crop production is harshly hindered by numerous biotic stresses. Sclerospora graminicola causes downy mildew disease in pearl millet. Effectors are the proteins secreted by several fungi and bacteria that manipulate the host cell structure and function. This current study aims to identify genes encoding effector proteins from the S. graminicola genome and validate them through molecular techniques. In silico analyses were employed for candidate effector prediction. A total of 845 secretory transmembrane proteins were predicted, out of which 35 proteins carrying LxLFLAK (Leucine-any amino acid-Phenylalanine-Leucine-Alanine-Lysine) motif were crinkler, 52 RxLR (Arginine, any amino acid, Leucine, Arginine), and 17 RxLR-dEER putative effector proteins. Gene validation analysis of 17 RxLR-dEER effector protein-producing genes was carried out, of which 5genes were amplified on the gel. These novel gene sequences were submitted to NCBI. This study is the first report on the identification and characterization of effector genes in Sclerospora graminicola. This dataset will aid in the integration of effector classes that act independently, paving the way to investigate how pearl millet responds to effector protein interactions. These results will assist in identifying functional effector proteins involving the omic approach using newer bioinformatics tools to protect pearl millet plants against downy mildew stress. Considered together, the identified effector protein-encoding functional genes can be utilized in screening oomycetes downy mildew diseases in other crops across the globe.

2.
Plant Dis ; 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34105375

RESUMEN

Pearl millet (Cenchrus americanus L.) field-grown plants of cv. 7042S shown unusual water-soaked lesions on leaf tips spreading towards the leaf base from Manasagangothri region (12.31°N 76.61°E), Karnataka, a southern Indian state during March 2020. Later those infected plants showed extensive necrosis and typical leaf blight symptoms with 70% disease incidence and 59% severity. Surface sterilized (3 x 3 mm) infected leaf tissues were crushed in 1mL sterile distilled water and streaked onto nutrient agar media. Bright-yellowish, circular, mucoid single bacterial colonies (PPi-M1) with regular margin were recovered after 24 hours of incubation at 28oC, and the same bacterial colonies were used for further biochemical and molecular characterization. The isolate, PPi-M1 found as gram-negative rods, gelatin, starch hydrolysis negative, and catalase, indole production positive. The partial sequence of 16S rRNA gene (primers: 27F/1492R) of the isolate PPi-M1 was amplified, sequenced, and curated sequence submitted to NCBI GenBank (accession number: MN808555). In nucleotide BLAST search for homologous sequences, 99.5% nucleotide matching similarity (1410bp) was observed with other Pantoea stewartii subspecies indologenes strains (MF163274; NR_104928) at NCBI database indicating that our isolate PPi-M1 belongs to this species. In Phylogenetic analysis using the Maximum Likelihood method and Tamura Nei model (1993), PPi-M1 formed a distinct cluster with other Pantoea stewartii strains with bootstrap value >95 and it was distant from P. allii, P. ananatis, P. agglomerans, and P. dispera. Besides, the subspecies-specific PCR assay and subsequent sequencing of galE and recA genes (primers: 3614galE/3614galEc; 3614recA/3614recAc; 372 and 223 bp) also confirmed the identity of the isolate as Pantoea stewartii subspecies indologenes. Further, the pathogenicity test was performed in-planta on 21 days old seedlings of pearl millet cv. CO-10. The bacterial suspension of isolate PPi-M1 (1x108 CFU/ml) was used for inoculation by leaf clipping method (Ke et al. 2017). All the inoculated plants (n=4 leaves per plant; 15 plants) maintained under greenhouse conditions (Temp: 27-29oC; RH: 80-85%) except mock (sterile water inoculation) shown similar water-soaked lesions from the cut end of the leaf, with a definite spreading margin and a typical leaf blight symptom in 8 dpi, as observed in the field. Re-isolated bacterial colonies from infected leaves shared similar morphological characters and molecular identity with inoculated culture, thus proving Koch's postulates. This pearl millet leaf blight causing bacterial strain PPi-M1 was deposited in the National Agriculturally Important Microbial Culture Collection, Mau, India (accession no.: NAIMCC-B-02508). Previously, P. stewartii was reported to cause leaf blight and rot diseases on rice and maize (Kini et al. 2016; Roper et al. 2011), also the international seed federation has instigated the phytosanitary measures highlighting its true seed transmission ability (Pataky et al. 2003). This study will supplement future pearl millet breeding programs, and to our knowledge, this is the first report of P. s. subsp. indologenes inciting pearl millet leaf blight disease in India.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...