Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 3374, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463859

RESUMEN

Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards both organic and inorganic materials. Phage display libraries are used to identify peptide biomolecules capable of specifically recognizing and binding organic/inorganic materials of interest with high affinities. Using combinatorial approaches, these molecular recognition elements can be converted into smart hybrid biomaterials and harnessed for biotechnological applications. Herein, we used a commercially available phage-display library to identify peptides with specific binding affinity to molybdenite (MoS2) and used them to decorate magnetic NPs. These peptide-coupled NPs could capture MoS2 under a variety of environmental conditions. The same batch of NPs could be re-used multiple times to harvest MoS2, clearly suggesting that this hybrid material was robust and recyclable. The advantages of this smart hybrid biomaterial with respect to its MoS2-binding specificity, robust performance under environmentally challenging conditions and its recyclability suggests its potential application in harvesting MoS2 from tailing ponds and downstream mining processes.

2.
Proteins ; 85(11): 2024-2035, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28734030

RESUMEN

Discovering or designing biofunctionalized materials with improved quality highly depends on the ability to manipulate and control the peptide-inorganic interaction. Various peptides can be used as assemblers, synthesizers, and linkers in the material syntheses. In another context, specific and selective material-binding peptides can be used as recognition blocks in mining applications. In this study, we propose a new in silico method to select short 4-mer peptides with high affinity and selectivity for a given target material. This method is illustrated with the calcite (104) surface as an example, which has been experimentally validated. A calcite binding peptide can play an important role in our understanding of biomineralization. A practical aspect of calcite is a need for it to be selectively depressed in mining sites.


Asunto(s)
Biología Computacional/métodos , Compuestos Inorgánicos/química , Compuestos Inorgánicos/metabolismo , Péptidos/química , Péptidos/metabolismo , Carbonato de Calcio , Minería , Simulación de Dinámica Molecular , Unión Proteica
3.
Theor Biol Med Model ; 11: 52, 2014 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-25542608

RESUMEN

A variety of topics are reviewed in the area of mathematical and computational modeling in biology, covering the range of scales from populations of organisms to electrons in atoms. The use of maximum entropy as an inference tool in the fields of biology and drug discovery is discussed. Mathematical and computational methods and models in the areas of epidemiology, cell physiology and cancer are surveyed. The technique of molecular dynamics is covered, with special attention to force fields for protein simulations and methods for the calculation of solvation free energies. The utility of quantum mechanical methods in biophysical and biochemical modeling is explored. The field of computational enzymology is examined.


Asunto(s)
Simulación por Computador , Entropía , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...