Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Laryngoscope ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470307

RESUMEN

OBJECTIVE: To estimate and adjust for rater effects in operating room surgical skills assessment performed using a structured rating scale for nasal septoplasty. METHODS: We analyzed survey responses from attending surgeons (raters) who supervised residents and fellows (trainees) performing nasal septoplasty in a prospective cohort study. We fit a structural equation model with the rubric item scores regressed on a latent component of skill and then fit a second model including the rating surgeon as a random effect to model a rater-effects-adjusted latent surgical skill. We validated this model against conventional measures including the level of expertise and post-graduation year (PGY) commensurate with the trainee's performance, the actual PGY of the trainee, and whether the surgical goals were achieved. RESULTS: Our dataset included 188 assessments by 7 raters and 41 trainees. The model with one latent construct for surgical skill and the rater as a random effect was the best. Rubric scores depended on how severe or lenient the rater was, sometimes almost as much as they depended on trainee skill. Rater-adjusted latent skill scores increased with attending-estimated skill levels and PGY of trainees, increased with the actual PGY, and appeared constant over different levels of achievement of surgical goals. CONCLUSION: Our work provides a method to obtain rater effect adjusted surgical skill assessments in the operating room using structured rating scales. Our method allows for the creation of standardized (i.e., rater-effects-adjusted) quantitative surgical skill benchmarks using national-level databases on trainee assessments. LEVEL OF EVIDENCE: N/A Laryngoscope, 2024.

2.
Facial Plast Surg Aesthet Med ; 24(6): 472-477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35255228

RESUMEN

Background: Surgeons must select cases whose complexity aligns with their skill set. Objectives: To determine how accurately trainees report involvement in procedures, judge case complexity, and assess their own skills. Methods: We recruited attendings and trainees from two otolaryngology departments. After performing septoplasty, they completed identical surveys regarding case complexity, achievement of goals, who performed which steps, and trainee skill using the septoplasty global assessment tool (SGAT) and visual analog scale (VAS). Agreement regarding which steps were performed by the trainee was assessed with Cohen's kappa coefficients (κ). Correlations between trainee and attending responses were measured with Spearman's correlation coefficients (rho). Results: Seven attendings and 42 trainees completed 181 paired surveys. Trainees and attendings sometimes disagreed about which steps were performed by trainees (range of κ = 0.743-0.846). Correlation between attending and trainee responses was low for VAS skill ratings (range of rho = 0.12-0.34), SGAT questions (range of rho = 0.03-0.53), and evaluation of case complexity (range of rho = 0.24-0.48). Conclusion: Trainees sometimes disagree with attendings about which septoplasty steps they perform and are limited in their ability to judge complexity, goals, and their skill.


Asunto(s)
Otolaringología , Rinoplastia , Cirujanos , Humanos , Quirófanos , Competencia Clínica
3.
J Med Imaging (Bellingham) ; 8(6): 065001, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34796250

RESUMEN

Purpose: Surgery involves modifying anatomy to achieve a goal. Reconstructing anatomy can facilitate surgical care through surgical planning, real-time decision support, or anticipating outcomes. Tool motion is a rich source of data that can be used to quantify anatomy. Our work develops and validates a method for reconstructing the nasal septum from unstructured motion of the Cottle elevator during the elevation phase of septoplasty surgery, without need to explicitly delineate the surface of the septum. Approach: The proposed method uses iterative closest point registration to initially register a template septum to the tool motion. Subsequently, statistical shape modeling with iterative most likely oriented point registration is used to fit the reconstructed septum to Cottle tip position and orientation during flap elevation. Regularization of the shape model and transformation is incorporated. The proposed methods were validated on 10 septoplasty surgeries performed on cadavers by operators of varying experience level. Preoperative CT images of the cadaver septums were segmented as ground truth. Results: We estimated reconstruction error as the difference between the projections of the Cottle tip onto the surface of the reconstructed septum and the ground-truth septum segmented from the CT image. We found translational differences of 2.74 ( 2.06 - 2.81 ) mm and a rotational differences of 8.95 ( 7.11 - 10.55 ) deg between the reconstructed septum and the ground-truth septum [median (interquartile range)], given the optimal regularization parameters. Conclusions: Accurate reconstruction of the nasal septum can be achieved from tool tracking data during septoplasty surgery on cadavers. This enables understanding of the septal anatomy without need for traditional medical imaging. This result may be used to facilitate surgical planning, intraoperative care, or skills assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...