Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hypertension ; 76(6): 1980-1991, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33012204

RESUMEN

Hypertension remains a major health problem in Western Societies, and blood pressure is poorly controlled in a third of patients despite use of multiple drugs. Mitochondrial dysfunction contributes to hypertension, and mitochondria-targeted agents can potentially improve treatment of hypertension. We have proposed that mitochondrial oxidative stress produces reactive dicarbonyl lipid peroxidation products, isolevuglandins, and that scavenging of mitochondrial isolevuglandins improves vascular function and reduces hypertension. To test this hypothesis, we have studied the accumulation of mitochondrial isolevuglandins-protein adducts in patients with essential hypertension and Ang II (angiotensin II) model of hypertension using mass spectrometry and Western blot analysis. The therapeutic potential of targeting mitochondrial isolevuglandins was tested by the novel mitochondria-targeted isolevuglandin scavenger, mito2HOBA. Mitochondrial isolevuglandins in arterioles from hypertensive patients were 250% greater than in arterioles from normotensive subjects, and ex vivo mito2HOBA treatment of arterioles from hypertensive subjects increased deacetylation of a key mitochondrial antioxidant, SOD2 (superoxide dismutase 2). In human aortic endothelial cells stimulated with Ang II plus TNF (tumor necrosis factor)-α, mito2HOBA reduced mitochondrial superoxide and cardiolipin oxidation, a specific marker of mitochondrial oxidative stress. In Ang II-infused mice, mito2HOBA diminished mitochondrial isolevuglandins-protein adducts, raised Sirt3 (sirtuin 3) mitochondrial deacetylase activity, reduced vascular superoxide, increased endothelial nitric oxide, improved endothelium-dependent relaxation, and attenuated hypertension. Mito2HOBA preserved mitochondrial respiration, protected ATP production, and reduced mitochondrial permeability pore opening in Ang II-infused mice. These data support the role of mitochondrial isolevuglandins in endothelial dysfunction and hypertension. We conclude that scavenging of mitochondrial isolevuglandins may have therapeutic potential in treatment of vascular dysfunction and hypertension.


Asunto(s)
Arteriolas/fisiopatología , Presión Sanguínea/fisiología , Hipertensión Esencial/fisiopatología , Lípidos/análisis , Mitocondrias/metabolismo , Estrés Oxidativo , Angiotensina II , Animales , Antioxidantes/metabolismo , Arteriolas/efectos de los fármacos , Arteriolas/metabolismo , Hipertensión Esencial/inducido químicamente , Hipertensión Esencial/metabolismo , Femenino , Depuradores de Radicales Libres/farmacología , Humanos , Lípidos/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo
2.
Circ Res ; 121(5): 564-574, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28684630

RESUMEN

RATIONALE: Clinical studies have shown that Sirt3 (Sirtuin 3) expression declines by 40% by 65 years of age paralleling the increased incidence of hypertension and metabolic conditions further inactivate Sirt3 because of increased NADH (nicotinamide adenine dinucleotide, reduced form) and acetyl-CoA levels. Sirt3 impairment reduces the activity of a key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) because of hyperacetylation. OBJECTIVE: In this study, we examined whether the loss of Sirt3 activity increases vascular oxidative stress because of SOD2 hyperacetylation and promotes endothelial dysfunction and hypertension. METHODS AND RESULTS: Hypertension was markedly increased in Sirt3-knockout (Sirt3-/-) and SOD2-depleted (SOD2+/-) mice in response to low dose of angiotensin II (0.3 mg/kg per day) compared with wild-type C57Bl/6J mice. Sirt3 depletion increased SOD2 acetylation, elevated mitochondrial O2· -, and diminished endothelial nitric oxide. Angiotensin II-induced hypertension was associated with Sirt3 S-glutathionylation, acetylation of vascular SOD2, and reduced SOD2 activity. Scavenging of mitochondrial H2O2 in mCAT mice expressing mitochondria-targeted catalase prevented Sirt3 and SOD2 impairment and attenuated hypertension. Treatment of mice after onset of hypertension with a mitochondria-targeted H2O2 scavenger, mitochondria-targeted hydrogen peroxide scavenger ebselen, reduced Sirt3 S-glutathionylation, diminished SOD2 acetylation, and reduced blood pressure in wild-type but not in Sirt3-/- mice, whereas an SOD2 mimetic, (2-[2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino]-2-oxoethyl) triphenylphosphonium (mitoTEMPO), reduced blood pressure and improved vasorelaxation both in Sirt3-/- and wild-type mice. SOD2 acetylation had an inverse correlation with SOD2 activity and a direct correlation with the severity of hypertension. Analysis of human subjects with essential hypertension showed 2.6-fold increase in SOD2 acetylation and 1.4-fold decrease in Sirt3 levels, whereas SOD2 expression was not affected. CONCLUSIONS: Our data suggest that diminished Sirt3 expression and redox inactivation of Sirt3 lead to SOD2 inactivation and contributes to the pathogenesis of hypertension.


Asunto(s)
Hipertensión/metabolismo , Estrés Oxidativo/fisiología , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo , Acetilación , Animales , Células Cultivadas , Humanos , Hipertensión/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sirtuina 3/genética , Superóxido Dismutasa/genética
3.
Hypertension ; 68(1): 123-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217403

RESUMEN

Emerging evidence supports an important role for T cells in the genesis of hypertension. Because this work has predominantly been performed in experimental animals, we sought to determine whether human T cells are activated in hypertension. We used a humanized mouse model in which the murine immune system is replaced by the human immune system. Angiotensin II increased systolic pressure to 162 versus 116 mm Hg for sham-treated animals. Flow cytometry of thoracic lymph nodes, thoracic aorta, and kidney revealed increased infiltration of human leukocytes (CD45(+)) and T lymphocytes (CD3(+) and CD4(+)) in response to angiotensin II infusion. Interestingly, there was also an increase in the memory T cells (CD3(+)/CD45RO(+)) in the aortas and lymph nodes. Prevention of hypertension using hydralazine and hydrochlorothiazide prevented the accumulation of T cells in these tissues. Studies of isolated human T cells and monocytes indicated that angiotensin II had no direct effect on cytokine production by T cells or the ability of dendritic cells to drive T-cell proliferation. We also observed an increase in circulating interleukin-17A producing CD4(+) T cells and both CD4(+) and CD8(+) T cells that produce interferon-γ in hypertensive compared with normotensive humans. Thus, human T cells become activated and invade critical end-organ tissues in response to hypertension in a humanized mouse model. This response likely reflects the hypertensive milieu encountered in vivo and is not a direct effect of the hormone angiotensin II.


Asunto(s)
Angiotensina II/farmacología , Anticuerpos Monoclonales Humanizados/inmunología , Hipertensión/inmunología , Activación de Linfocitos/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Análisis de Varianza , Animales , Células Cultivadas/efectos de los fármacos , Células Cultivadas/inmunología , Distribución de Chi-Cuadrado , Modelos Animales de Enfermedad , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Riñón/efectos de los fármacos , Riñón/inmunología , Riñón/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratones , Persona de Mediana Edad , Distribución Aleatoria , Valores de Referencia , Muestreo , Estadísticas no Paramétricas , Linfocitos T Reguladores/efectos de los fármacos
4.
Hypertension ; 67(6): 1218-27, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27067720

RESUMEN

Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension.


Asunto(s)
Ciclofilinas/metabolismo , Hipertensión/metabolismo , Estrés Oxidativo/fisiología , Vasodilatación/fisiología , Análisis de Varianza , Angiotensina II/farmacología , Animales , Biomarcadores/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Peptidil-Prolil Isomerasa F , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Hipertensión/fisiopatología , Lactonas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Distribución Aleatoria , Compuestos de Espiro/farmacología , Superóxidos/metabolismo
5.
J Exp Med ; 213(3): 337-54, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26926996

RESUMEN

Abnormal glucose metabolism and enhanced oxidative stress accelerate cardiovascular disease, a chronic inflammatory condition causing high morbidity and mortality. Here, we report that in monocytes and macrophages of patients with atherosclerotic coronary artery disease (CAD), overutilization of glucose promotes excessive and prolonged production of the cytokines IL-6 and IL-1ß, driving systemic and tissue inflammation. In patient-derived monocytes and macrophages, increased glucose uptake and glycolytic flux fuel the generation of mitochondrial reactive oxygen species, which in turn promote dimerization of the glycolytic enzyme pyruvate kinase M2 (PKM2) and enable its nuclear translocation. Nuclear PKM2 functions as a protein kinase that phosphorylates the transcription factor STAT3, thus boosting IL-6 and IL-1ß production. Reducing glycolysis, scavenging superoxide and enforcing PKM2 tetramerization correct the proinflammatory phenotype of CAD macrophages. In essence, PKM2 serves a previously unidentified role as a molecular integrator of metabolic dysfunction, oxidative stress and tissue inflammation and represents a novel therapeutic target in cardiovascular disease.


Asunto(s)
Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Glucólisis , Inflamación/patología , Piruvato Quinasa/metabolismo , Anciano , Respiración de la Célula , Enfermedad de la Arteria Coronaria/enzimología , Femenino , Glucosa/metabolismo , Humanos , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Macrófagos/metabolismo , Masculino , Mitocondrias/metabolismo , Monocitos/metabolismo , Monocitos/patología , Fenotipo , Fosforilación , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo
6.
Antioxid Redox Signal ; 20(2): 281-94, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24053613

RESUMEN

AIMS: Angiotensin II (AngII)-induced superoxide (O2(•-)) production by the NADPH oxidases and mitochondria has been implicated in the pathogenesis of endothelial dysfunction and hypertension. In this work, we investigated the specific molecular mechanisms responsible for the stimulation of mitochondrial O2(•-) and its downstream targets using cultured human aortic endothelial cells and a mouse model of AngII-induced hypertension. RESULTS: Western blot analysis showed that Nox2 and Nox4 were present in the cytoplasm but not in the mitochondria. Depletion of Nox2, but not Nox1, Nox4, or Nox5, using siRNA inhibits AngII-induced O2(•-) production in both mitochondria and cytoplasm. Nox2 depletion in gp91phox knockout mice inhibited AngII-induced cellular and mitochondrial O2(•-) and attenuated hypertension. Inhibition of mitochondrial reverse electron transfer with malonate, malate, or rotenone attenuated AngII-induced cytoplasmic and mitochondrial O2(•-) production. Inhibition of the mitochondrial ATP-sensitive potassium channel (mitoK(+)ATP) with 5-hydroxydecanoic acid or specific PKCɛ peptide antagonist (EAVSLKPT) reduced AngII-induced H2O2 in isolated mitochondria and diminished cytoplasmic O2(•-). The mitoK(+)ATP agonist diazoxide increased mitochondrial O2(•-), cytoplasmic c-Src phosphorylation and cytoplasmic O2(•-) suggesting feed-forward regulation of cellular O2(•-) by mitochondrial reactive oxygen species (ROS). Treatment of AngII-infused mice with malate reduced blood pressure and enhanced the antihypertensive effect of mitoTEMPO. Mitochondria-targeted H2O2 scavenger mitoEbselen attenuated redox-dependent c-Src and inhibited AngII-induced cellular O2(•-), diminished aortic H2O2, and reduced blood pressure in hypertensive mice. INNOVATION AND CONCLUSIONS: These studies show that Nox2 stimulates mitochondrial ROS by activating reverse electron transfer and both mitochondrial O2(•-) and reverse electron transfer may represent new pharmacological targets for the treatment of hypertension.


Asunto(s)
Angiotensina II/metabolismo , Hipertensión/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocondrias Cardíacas/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Superóxidos/metabolismo , Angiotensina II/farmacología , Animales , Proteína Tirosina Quinasa CSK , Óxidos N-Cíclicos/metabolismo , Óxidos N-Cíclicos/farmacología , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Transporte de Electrón , Células Endoteliales/metabolismo , Silenciador del Gen , Humanos , Peróxido de Hidrógeno/metabolismo , Hipertensión/fisiopatología , Malatos/metabolismo , Malatos/farmacología , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Estrés Oxidativo/efectos de los fármacos , Isoformas de Proteínas , Transporte de Proteínas , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Familia-src Quinasas/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 305(8): H1131-40, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23955717

RESUMEN

Superoxide (O2(·-)) production by the NADPH oxidases is implicated in the pathogenesis of many cardiovascular diseases, including hypertension. We have previously shown that activation of NADPH oxidases increases mitochondrial O2(·-) which is inhibited by the ATP-sensitive K(+) channel (mitoKATP) inhibitor 5-hydroxydecanoic acid and that scavenging of mitochondrial or cytoplasmic O2(·-) inhibits hypertension. We hypothesized that mitoKATP-mediated mitochondrial O2(·-) potentiates cytoplasmic O2(·-) by stimulation of NADPH oxidases. In this work we studied Nox isoforms as a potential target of mitochondrial O2(·-). We tested contribution of reverse electron transfer (RET) from complex II to complex I in mitochondrial O2(·-) production and NADPH oxidase activation in human aortic endothelial cells. Activation of mitoKATP with low dose of diazoxide (100 nM) decreased mitochondrial membrane potential (tetramethylrhodamine methyl ester probe) and increased production of mitochondrial and cytoplasmic O2(·-) measured by site-specific probes and mitoSOX. Inhibition of RET with complex II inhibitor (malonate) or complex I inhibitor (rotenone) attenuated the production of mitochondrial and cytoplasmic O2(·-). Supplementation with a mitochondria-targeted SOD mimetic (mitoTEMPO) or a mitochondria-targeted glutathione peroxidase mimetic (mitoEbselen) inhibited production of mitochondrial and cytoplasmic O2(·-). Inhibition of Nox2 (gp91ds) or Nox2 depletion with small interfering RNA but not Nox1, Nox4, or Nox5 abolished diazoxide-induced O2(·-) production in the cytoplasm. Treatment of angiotensin II-infused mice with RET inhibitor dihydroethidium (malate) significantly reduced blood pressure. Our study suggests that mitoKATP-mediated mitochondrial O2(·-) stimulates cytoplasmic Nox2, contributing to the development of endothelial oxidative stress and hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Células Endoteliales/fisiología , Glicoproteínas de Membrana/fisiología , NADPH Oxidasas/fisiología , Estrés Oxidativo/fisiología , Superóxidos , Animales , Aorta/citología , Presión Sanguínea/efectos de los fármacos , Respiración de la Célula/fisiología , Células Cultivadas , Diazóxido/farmacología , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/fisiología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NADPH Oxidasa 2 , Canales de Potasio/metabolismo , Vasodilatadores/farmacología
8.
Am J Physiol Regul Integr Comp Physiol ; 305(2): R98-100, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23657641

RESUMEN

In the past decade, it has become clear that reactive oxygen species (ROS) and inflammation play an important role in the development of hypertension. Scavenging of mitochondrial superoxide and blocking either IL-17 or tumor necrosis factor-α (TNF-α) attenuates hypertension. T-cells, critical for development of hypertension, once activated intensively produce cytokines, proliferate, and differentiate. Thus T-cell activation leads to expanded energy demand. To fulfill these needs, T-cells through tightly regulated mechanisms, supported by mitochondrial ROS (mtROS), alter their metabolic phenotype. In this review we summarize data and show evidence supporting new concept that mtROS directly contributes to prohypertensive response of immune cells.


Asunto(s)
Hipertensión/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/inmunología , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Hipertensión/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-17/metabolismo , Mitocondrias/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
9.
Antioxid Redox Signal ; 19(4): 344-9, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23373855

RESUMEN

It has been previously suggested that overexpression of mitochondrial superoxide dismutase (SOD) attenuates cancer development; however, the exact mechanism remains unclear. In this work, we have studied the direct effect of the mitochondria-targeted superoxide scavenger, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), on B16-F0 mouse melanoma cells and tumor growth in a nude mouse model of human melanoma. We show that scavenging of mitochondrial superoxide inhibited cell growth, reduced viability, and induced apoptosis in melanoma cells, but did not affect nonmalignant skin fibroblasts. Diminished mitochondrial superoxide inhibited redox-dependent Akt, restored activity of mitochondrial pyruvate dehydrogenase, and reduced HIF1-α and lactate dehydrogenase expression in cancer cells. Suppression of glycolysis in mitoTEMPO-treated melanoma cells resulted in a significant drop of cellular adenosine-5'-triphosphate and induced cell death. In vivo mitoTEMPO treatment effectively suppressed growth of established tumor in the mouse model of human melanoma. Therefore, our data lead to the hypothesis that scavenging of mitochondrial superoxide selectively inhibits redox-sensitive survival and metabolic pathways, resulting in cancer cell death. In contrast to existing anticancer therapies, inhibition of mitochondrial superoxide may represent a novel specific anticancer treatment with reduced cytotoxic side effects.


Asunto(s)
Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/metabolismo , Superóxidos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Transducción de Señal/efectos de los fármacos
10.
Antioxid Redox Signal ; 19(10): 1085-94, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22443458

RESUMEN

SIGNIFICANCE: The role of reactive oxygen species (ROS) in angiotensin II (AngII) induced endothelial dysfunction, cardiovascular and renal remodeling, inflammation, and fibrosis has been well documented. The molecular mechanisms of AngII pathophysiological activity involve the stimulation of NADPH oxidases, which produce superoxide and hydrogen peroxide. AngII also increases the production of mitochondrial ROS, while the inhibition of AngII improves mitochondrial function; however, the specific molecular mechanisms of the stimulation of mitochondrial ROS is not clear. RECENT ADVANCES: Interestingly, the overexpression of mitochondrial thioredoxin 2 or mitochondrial superoxide dismutase attenuates AngII-induced hypertension, which demonstrates the importance of mitochondrial ROS in AngII-mediated cardiovascular diseases. CRITICAL ISSUES: Although mitochondrial ROS plays an important role in normal physiological cell signaling, AngII, high glucose, high fat, or hypoxia may cause the overproduction of mitochondrial ROS, leading to the feed-forward redox stimulation of NADPH oxidases. This vicious cycle may contribute to the development of pathological conditions and facilitate organ damage in hypertension, atherosclerosis, and diabetes. FUTURE DIRECTIONS: The development of antioxidant strategies specifically targeting mitochondria could be therapeutically beneficial in these disease conditions.


Asunto(s)
Angiotensina II/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Angiotensina II/fisiología , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/patología , NADPH Oxidasas/metabolismo , Estrés Oxidativo/genética , Transducción de Señal , Superóxido Dismutasa/metabolismo
11.
J Biomol Screen ; 18(4): 498-503, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23190737

RESUMEN

Superoxide plays a key role in many pathological processes; however, detection of superoxide by one of the most common methods using dihydroethidium (DHE) may be unspecific because of overlapping fluorescence of the superoxide-specific product, 2-OH-ethidium (2OH-E), and the unspecific oxidation product, ethidium. Here, we show a new optimized fluorescence spectroscopy protocol that allows rapid and specific detection of superoxide in cell-free systems and intact cells using DHE. We defined new optimized fluorescent settings to measure the superoxide-specific product and minimize the interference of unspecific DHE oxidation products. Using this protocol, we studied real-time superoxide production by xanthine oxidase- and menadione-treated cultured cells. Specificity of the plate reader-based superoxide measurements was confirmed by the inhibition of fluorescence with superoxide dismutase and high-performance liquid chromatography (HPLC) analysis. We show that limitations of the HPLC-based analysis can be overcome by the optimized fluorescence spectroscopy.


Asunto(s)
Espectrometría de Fluorescencia/métodos , Superóxidos/análisis , Células Cultivadas , Células Endoteliales/metabolismo , Etidio/análogos & derivados , Etidio/metabolismo , Humanos , Xantina Oxidasa/metabolismo
12.
Circ Res ; 107(1): 106-16, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20448215

RESUMEN

RATIONALE: Superoxide (O2(-) ) has been implicated in the pathogenesis of many human diseases including hypertension; however, commonly used antioxidants have proven ineffective in clinical trials. It is possible that these agents are not adequately delivered to the subcellular sites of superoxide production. OBJECTIVE: Because the mitochondria are important sources of reactive oxygen species, we postulated that mitochondrial targeting of superoxide scavenging would have therapeutic benefit. METHODS AND RESULTS: In this study, we found that the hormone angiotensin (Ang II) increased endothelial mitochondrial superoxide production. Treatment with the mitochondria-targeted antioxidant mitoTEMPO decreased mitochondrial O2(-), inhibited the total cellular O2(-), reduced cellular NADPH oxidase activity, and restored the level of bioavailable NO. These effects were mimicked by overexpressing the mitochondrial MnSOD (SOD2), whereas SOD2 depletion with small interfering RNA increased both basal and Ang II-stimulated cellular O2(-). Treatment of mice in vivo with mitoTEMPO attenuated hypertension when given at the onset of Ang II infusion and decreased blood pressure by 30 mm Hg following establishment of both Ang II-induced and DOCA salt hypertension, whereas a similar dose of nontargeted TEMPOL was not effective. In vivo, mitoTEMPO decreased vascular O2(-), increased vascular NO production and improved endothelial-dependent relaxation. Interestingly, transgenic mice overexpressing mitochondrial SOD2 demonstrated attenuated Ang II-induced hypertension and vascular oxidative stress similar to mice treated with mitoTEMPO. CONCLUSIONS: These studies show that mitochondrial O2(-) is important for the development of hypertension and that antioxidant strategies specifically targeting this organelle could have therapeutic benefit in this and possibly other diseases.


Asunto(s)
Antioxidantes/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Hipertensión/tratamiento farmacológico , Hipertensión/enzimología , Mitocondrias/enzimología , Superóxido Dismutasa/biosíntesis , Animales , Bovinos , Células Cultivadas , Óxidos N-Cíclicos/administración & dosificación , Células Endoteliales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Superóxidos/metabolismo
13.
Front Biosci ; 13: 3116-26, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17981781

RESUMEN

Multiple sclerosis (MS) is a neurological disorder of the central nervous system characterized by demyelination and neurodegeneration. Although the pathogenesis of MS is not completely understood, various studies suggest that immune-mediated loss of myelin and mitochondrial dysfunction are associated with the disease. Mitochondria are one of the main cellular sources of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and play a pivotal role in many neuro-pathological conditions. Mitochondrial dysfunction leading to excessive production of ROS and RNS plays a significant role in the pathogenesis of MS, particularly in loss of myelin/oligodendrocyte complex. The present review summarizes critical role of mitochondria in the pathogenesis of MS. Further understanding of the role of mitochondria in MS may provide rationale for novel approaches to this disease and development of novel therapeutic maneuvers.


Asunto(s)
Mitocondrias/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/terapia , Animales , Apoptosis , Daño del ADN , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/terapia , Humanos , Modelos Biológicos , Óxido Nítrico , Ácido Peroxinitroso/farmacología , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Compuestos de Sulfhidrilo
14.
Biochem Biophys Res Commun ; 366(1): 23-8, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18036554

RESUMEN

The present study shows that rat liver and brain mitochondrial nitric oxide synthase (mtNOS) are functionally associated with mitochondrial respiratory chain complex I. When complex I is activated, mtNOS exerts high activity and generates nitric oxide, whereas inactivation of complex I leads mtNOS to abandon its NOS activity. Functional association of mtNOS with complex I is potentially important in regulating mtNOS activity and mitochondrial functions.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Activación Enzimática , Ratas , Ratas Sprague-Dawley , Estadística como Asunto
15.
Arch Biochem Biophys ; 468(1): 114-20, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17963719

RESUMEN

12(S)-hydroxyeicosatetraenoic acid (12-HETE) is one of the metabolites of arachidonic acid involved in pathological conditions associated with mitochondria and oxidative stress. The present study tested effects of 12-HETE on mitochondrial functions. In isolated rat heart mitochondria, 12-HETE increases intramitochondrial ionized calcium concentration that stimulates mitochondrial nitric oxide (NO) synthase (mtNOS) activity. mtNOS-derived NO causes mitochondrial dysfunctions by decreasing mitochondrial respiration and transmembrane potential. mtNOS-derived NO also produces peroxynitrite that induces release of cytochrome c and stimulates aggregation of mitochondria. Similarly, in HL-1 cardiac myocytes, 12-HETE increases intramitochondrial calcium and mitochondrial NO, and induces apoptosis. The present study suggests a novel mechanism for 12-HETE toxicity.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/administración & dosificación , Calcio/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Miocitos Cardíacos/ultraestructura , Ratas , Ratas Sprague-Dawley
16.
Rejuvenation Res ; 10(4): 435-40, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17663642

RESUMEN

The present study investigated the effect of a ketogenic diet on the blood redox status of healthy female subjects. Twenty healthy females with mean body mass index of 21.45 +/- 2.05 kg/m(2) were provided a low-carbohydrate (55 +/- 6 g; 13% total energy), high-fat (138 +/- 16 g; 74% total energy), calorie-restricted (-465 +/- 115 kcal/d) diet. The followings were tested prior to and after 14 days consumption of the diet: Whole body, body weight and total body fat; blood, complete blood count, red blood cells, white blood cells, hemoglobin, and hematocrit; plasma, 3-beta-hydroxybutyrate, total antioxidative status, and uric acid; red blood cells, total sulfhydryl content, malondialdehyde, superoxide dismutase activity, and catalase activity. After 14 days, weight loss was significant whereas no changes were detected in body fat. No alterations were observed in blood count or morphology. 3-beta-hydroxybutyrate, total antioxidative status, uric acid, and sulfhydryl content were significantly increased. There were no alterations in malondialdehyde, or superoxide dismutase or catalase activity. The present study demonstrates that 14 days of a ketogenic diet elevates blood antioxidative capacity and does not induce oxidative stress in healthy subjects.


Asunto(s)
Catalasa/sangre , Dieta Baja en Carbohidratos , Dieta Reductora , Grasas de la Dieta/administración & dosificación , Cetosis/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/sangre , Adulto , Femenino , Humanos , Peroxidación de Lípido , Ácido Úrico/sangre
17.
J Mol Cell Cardiol ; 43(4): 411-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17597148

RESUMEN

The objective of the present study was to delineate the molecular mechanisms for mitochondrial contribution to oxidative stress induced by hypoxia and reoxygenation in the heart. The present study introduces a novel model allowing real-time study of mitochondria under hypoxia and reoxygenation, and describes the significance of intramitochondrial calcium homeostasis and mitochondrial nitric oxide synthase (mtNOS) for oxidative stress. The present study shows that incubating isolated rat heart mitochondria under hypoxia followed by reoxygenation, but not hypoxia per se, causes cytochrome c release from the mitochondria, oxidative modification of mitochondrial lipids and proteins, and inactivation of mitochondrial enzymes susceptible to inactivation by peroxynitrite. These alterations were prevented when mtNOS was inhibited or mitochondria were supplemented with antioxidant peroxynitrite scavengers. The present study shows mitochondria independent of other cellular components respond to hypoxia/reoxygenation by elevating intramitochondrial ionized calcium and stimulating mtNOS. The present study proposes a crucial role for heart mitochondrial calcium homeostasis and mtNOS in oxidative stress induced by hypoxia/reoxygenation.


Asunto(s)
Citocromos c/metabolismo , Corazón/efectos de los fármacos , Hipoxia/metabolismo , Mitocondrias Cardíacas/enzimología , Miocardio/metabolismo , Óxido Nítrico Sintasa/fisiología , Estrés Oxidativo , Oxígeno/farmacología , Animales , Calcio/metabolismo , Calcio/fisiología , Técnicas In Vitro , Modelos Biológicos , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas , Ratas Sprague-Dawley
18.
Cancer Res ; 67(3): 1282-90, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17283165

RESUMEN

Tamoxifen is an anticancer drug that induces oxidative stress and apoptosis via mitochondria-dependent and nitric oxide (NO)-dependent pathways. The present report shows that tamoxifen increases intramitochondrial ionized Ca(2+) concentration and stimulates mitochondrial NO synthase (mtNOS) activity in the mitochondria from rat liver and human breast cancer MCF-7 cells. By stimulating mtNOS, tamoxifen hampers mitochondrial respiration, releases cytochrome c, elevates mitochondrial lipid peroxidation, increases protein tyrosine nitration of certain mitochondrial proteins, decreases the catalytic activity of succinyl-CoA:3-oxoacid CoA-transferase, and induces aggregation of mitochondria. The present report suggests a critical role for mtNOS in apoptosis induced by tamoxifen.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Óxido Nítrico Sintasa/metabolismo , Tamoxifeno/farmacología , Animales , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/enzimología , Calcio/metabolismo , Línea Celular Tumoral , Citocromos c/metabolismo , Femenino , Humanos , Peroxidación de Lípido , Mitocondrias/enzimología , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ácido Peroxinitroso/biosíntesis , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...