Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Environ Health Res ; 34(3): 1284-1298, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36800924

RESUMEN

Present work was conducted to prepare and evaluate, loaded paraquat nano-hydrogels using chitosan, sodium polytriphosphate, and xanthan via ionic gelification method. The fabricated L-PQ formulations were analyzed for surface morphology and functional groups using SEM and FTIR, respectively. The stability of the synthesized nanoparticle was, also, analyzed in terms of diameter size, zeta potential, dispersion index, and pH. Furthermore, the cardiotoxicity effects of the synthesized nanogels were investigated on Wistar rats in terms of enzymatic activity, echocardiographic, and histological analysis. The proper stability of the prepared formulation was also confirmed by diameter size, zeta potential, dispersion index, and pH. The efficiency of encapsulation was about 90±3.2% and the release of PQ in the loaded nanogel was about 90±2.3%. A decrease in ST (shortening time) segment by formulated PQ, either in peritoneal or gavage exposure pathway, indicates the effectiveness of the capsule layer against the penetration of toxin into the body.


Asunto(s)
Nanocápsulas , Nanopartículas , Ratas , Animales , Ratas Wistar , Cardiotoxicidad , Polímeros , Tamaño de la Partícula
2.
J Environ Health Sci Eng ; 18(2): 1057-1066, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33312624

RESUMEN

PURPOSE: Paraquat is an effective, non-selective, and fast-acting contact herbicide that is widely used. Its high solubility in water and adsorption in soil can easily poison the non-target organs. In this study, paraquat nano-hydrogels was synthesized using chitosan. METHODS: Sodium tripolyphosphate and xanthan via iononic gellification method. After preparation the loaded paraquat formulations, to verify the morphology and analysis the functional groups on the formulation, SEM and FTIR analysis were used, respectively. In this work, stability of the formulation was measured in terms of size distribution, surface charge, and pH values. To determine the release kinetics, a dialysis bag was used. In addition, herbicidal activity of the prepared formulation was tested on corn bushes and wild mustard. RESULTS: From the analysis, FT-IR spectra confirmed the hydrogel formation, and SEM images showed a dense structure in the synthesized hydrogel. According to the results of size distribution, surface charge, dispersion index and pH, it was proved that the prepared hydrogel was stable. The optimal values of chitosan, SPP, xanthan, and PQ were 0.3, 0.1, 0.15, and 20 mg, respectively. Based on the peppas equation, about 89.82% of the paraquat was released from the formulation with a paraquat loading of 89.1 ± 4.6%. CONCLUSIONS: The effect of loaded paraquat formulations on mustard and corn plants showed that the herbicidal properties of the encapsulated paraquat were preserved. This study reveal that the loaded paraquat L-PQ is a stable formulation with less toxicity effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA