Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 348: 109645, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34516973

RESUMEN

Semi-synthetic A-cycle modified triterpenic derivatives with A-cycle condensed with a heterocyclic fragment (compound 1) and fragmented A-ring (compound 2) were tested for cytotoxicity against several tumor cell cultures and doxorubicin (Dox)-resistant cell lines. The equal cytotoxicity of the tested compounds to the parental tumor cell lines (HBL-100, K562) and their resistant subclones (HBL-100/Dox, K562/i-S9) was revealed. The overexpression of ABCB1 (MDR1) gene and P-glycoprotein (P-gp) was confirmed for both resistant subclones of tumor cells. Compounds 1 and 2 were shown to inhibit the ABC-transporter gene expression (MDR1, MRP, MVP, and BCRP) and the transport of well-known P-gp substrate Rhodamine 123 from resistant cells. The docking of triterpenoids 1 and 2 into the drug binding site of P-gp revealed a similarity between the conformation of the tested triterpenoids and that of classical inhibitor verapamil, thus assuming these compounds to be more likely the inhibitors than the substrates of P-gp. Any tested triterpenic derivatives, when combined at non-toxic concentrations with doxorubicin, improved cytotoxic effect of the therapeutic drug against resistant subclones of tumor cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacología , Línea Celular Tumoral , Humanos , Relación Estructura-Actividad
2.
Eur J Med Chem ; 125: 629-639, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27721148

RESUMEN

An efficient scheme to synthesize novel ring-A fused heterocyclic derivatives of betulin was developed. The starting reaction of this synthesis was one-pot selective bacterial oxidation of betulin to betulone used as the key compound to synthesize the substituted azoles such as C(2)-C(3)-fused 1,2,3-triazoles, oxazoles and 1,2,4-triazine, as well as C(1)-C(2)-fused isoxazoles. The semi-synthetic compounds were screened for their cytotoxic activity against human cancer cell lines A549, HCT 116, HEp-2, MS and RD TE32 with use of the photometric MTT assays. Among the tested compounds, N-acetyltriazole of betulin (10) displayed impressive cytotoxic activity with IC50 2.3-7.5 µM against HCT 116, HEp-2, MS and RD TE32 cell lines as well as 3-methyl-4-oxido-1,2,4-triazine-derivative of betulonic acid (12) that was active against HCT 116 and HEp-2 cell lines with IC50 1.4 and 1.5 µM, respectively. Comparative experiments showed triazole (10) to have a lower cytotoxicity to normal epithelial cells, in comparison with compound (12). In accord with the in vivo acute toxicity test, the LD50 of triazole (10) exceeded 600 mg/kg. The ability of the most potent active triazole (10) to trigger apoptotic cell death was explored in the Annexin V-FITC test and by analyzing of caspase activity and morphological alterations in mitochondria and nuclei of HCT 116 cells.


Asunto(s)
Azoles/síntesis química , Azoles/toxicidad , Triterpenos/química , Azoles/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Dosificación Letal Mediana , Estructura Molecular , Triazinas/química , Triazinas/toxicidad , Triterpenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA