Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Heliyon ; 9(3): e14162, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36923866

RESUMEN

Worldwide, P. marginatus causes 75% of estimated economic loss in papaya farming, with an increase in production costs. The extract of plant essential oils (PEO) has the potential to control P. marginatus by degrading its wax coatings to death; however, it is less studied in the East African agroecosystem. Therefore, this study was conducted to evaluate the efficacy of four PEO from (neem, citrus, garlic, and castor) against P. marginatus at different concentrations (0.5%, 1%, and 1.5%) with and without 0.2% adjuvants separately as a biopesticide. The experiment was conducted in a completely randomized design with four replications per treatment concentration. The papaya seeds (Carina variety) were used in the experiment. After 3 weeks from transplanting, 50 P. marginatus specimens were inoculated in each plant. Before treatment application, insect abundance, leaf curling, yellowing, and soot mold were assessed. Then, 24 h, 48 h, and 72 h after biopesticide application, insect mortality was assessed. The results showed a significant difference (p = 0.001) for all assessment intervals in PEOs. However, for the PEOs in combination with the adjuvants, the results were significantly different (p = 0.001) only at 24 h. It was found that among the biopesticides, neem oil (1.5%) + isopropyl alcohol was highly effective (95.5%) after 72 h followed by (Imidacloprid (91%), citrus oil 1.5% (90.7%) and neem oil (1.5%) + paraffin oil (81.0%). But also, there were significant differences among treatments on leaf curling, yellowing, and soot mold reduction in papaya plants 21 days after spray. We conclude that neem oil (1.5%) + 0.2% isopropyl alcohol, neem oil (1.5%) + paraffin oil, and citrus oil (1.5%) significantly controlled P. marginatus. Thus, we recommend adopting these formulations for papaya farmers to control P. marginatus in their farms; however, simple formulations which can be easily accessed by smallholder farmers are essential.

2.
MethodsX ; 9: 101882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311266

RESUMEN

Majority of under-developed countries continue to face a challenge of food insecurity around urban areas resulting from factors such as; limited access to arable land. This study aimed at developing a simplified low-tech hydroponic system for growing leafy vegetables alongside testing its economic viability. This was intended to support urban vegetable production and henceforth contributing to food security more so in under-developed states dealing with the challenge of increasing urban population vs. reducing arable land around urban/ peri-urban areas. A hydroponic unit for growing 60 leafy vegetables (using lettuce as a study crop) under non-controlled environmental conditions was designed and developed using low-cost and low-tech materials. Kratky hydroponic method which involves growing crops using water as a media without the need for water pumps and electricity was used. A study was also carried out to assess the profitability of the system. The results indicated a: net present values of 16.37$, internal rate of return of 12.57%, profitability index of 1.1 and non-discounted payback period of approximately 8 months (4 cropping seasons). These findings showed that the system has the potential to improve urban food production and availability in especially in developing countries in a profitable manner. Vegetable production using the hydroponic system can also contribute to:•tachievement of sustainable development goals, 2 (zero hunger) and 3 (good health and wellbeing);•improvement in urban agriculture production and income generation among urban farmers;•enhanced adoption of low-cost, low-tech, environmental-friendly and sustainable farming systems.

3.
Front Plant Sci ; 13: 784032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812964

RESUMEN

Farmer-participatory breeding approach is an important component in the crop improvement of lablab (Lablab purpureus (L.) Sweet). The study was carried out to obtain the knowledge, practices and preferences of lablab through 31 lablab growing-farmers from Arusha, Kondoa, Karatu, Same and Babati districts of Tanzania toward initiating a lablab breeding program. Semi-structured questionnaires were administered and focused group discussions were held to collect data on the socio-demographic factors, production practices, constraints and farmer's preferred traits of lablab. Selection of preferred traits and accessions was also done by the farmers in the field. Results showed that the chief constraints of lablab production are pests and diseases, poor marketability, low seed quality, inadequate rainfall, expensive agrochemicals, low yield, and poor storage facilities. The major pests are pod borer (field) and bruchids (storage). Preferred traits for lablab improvement include the development of insect pests and disease-resistant varieties, early maturing, high yield, black colored seed for market, short cooking time, and dense foliage. Genotypes EK2, D360, HA4, and D96 with preferred traits were identified by farmers, which forms critical decisions in crop improvement. This study describes the current view of lablab production and generates the understanding of farmers' perceptions and preferences vital for breeding priorities and programs to increase its production, utilization and consumption.

4.
Insects ; 13(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35886745

RESUMEN

Field margins support important ecosystem services including natural pest regulation. We investigated the influence of field margins on the spatial and temporal distribution of natural enemies (NEs) of bean pests in smallholder farming systems. We sampled NEs from high and low plant diversity bean fields using sweep netting and coloured sticky traps, comparing monocropped and intercropped farms. NEs collected from within crops included predatory bugs, lacewings, predatory flies, parasitic flies, parasitic wasps, lady beetles, and a range of other predatory beetles; with the most dominant group being parasitic wasps. Overall, high plant diversity fields had a higher number of NEs than low-diversity fields, regardless of sampling methods. The field margin had a significantly higher number of lacewings, parasitic wasps, predatory bugs, syrphid flies, and other predatory beetles relative to the crop, but beneficial insects were collected throughout the fields. However, we observed marginally higher populations of NEs in intercropping than in monocropping although the effect was not significant in both low and high plant diversity fields. We recommend smallholder farmers protect the field margins for the added benefit of natural pest regulation in their fields.

5.
Saudi J Biol Sci ; 29(5): 3539-3545, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844433

RESUMEN

Papaya mealybug (PMB) is a serious insect pest for papaya production in Sub-Saharan Africa, limiting production potential in farming communities. We did a household survey to evaluate the Characteristics of farmers' knowledge, challenges, and current (PMB) control practices in four papaya growing regions of Tanzania namely, Tanga, Dodoma, Pwani, and Katavi involving 100 papaya farmers. The study found that 96% of farmers reported PMB, as a major challenge in papaya production. Very few (0.8%) of the farmers were knowledgeable on insect pest identification. Chemical pesticides were the only option for PMB control, and 43.0% of farmers were able to access and apply. We also found that 36.4% of the farmers were aware of the adverse effects of chemical pesticides. Furthermore, the study observed that 0.3% of farmers use botanical pesticides. Additionally, the study observed that 44.1% of farmers use control measures against PMB, the remaining 55.9% did not practice any control measure, thus leading to low papaya yields observed in the study regions. Our findings provide insights to farmers into the use of plant-based pesticides, mainly plant essential oils, and its benefits that may promote farmers' attitudes towards increasing papaya yield and reducing chemical pesticide use to avoid pest resistance.

6.
Mar Pollut Bull ; 181: 113909, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35810649

RESUMEN

The agrochemicals and nutrient losses from farming areas such as paddy farming significantly dictate quality and eutrophication of the freshwater resource. However, how farming and land use pattern affect water qualities and eutrophication remain poorly understood in most African agro-ecosystems. The present study characterized how paddy farming influences water qualities and eutrophication in 10 irrigation schemes in Usangu agro-ecosystem (UA). About 42 water samples were sampled from intakes, channels, paddy fields, and drainages and analyzed for EC, Cl, P, NH4-N, NO3-N, TN, Zn, Cu, Ca, and Mg. We observed water pH ranging from 4.89 to 6.76, which was generally below the acceptable range (6.5-8.4) for irrigation water. NH4-N concentration was in a range of 10.6-70.0 mg/L, NO3-N (8.4-33.9 mg/L), and TN (19.1-21,104 mg/L). NH4-N increased along sampling transect (sampling points) from intakes (5.7-29.1 mg/L), channels (19-20 mg/L), fields (12.9-35.8 mg/L), and outflow (10.6-70.0 mg/L), the same trend were found for NO3-N and TN. The TP determined in water samples were in the range of 0.01 to 1.65 mg/L; where some sites had P > 0.1 mg/L exceeding the allowable P concentration in freshwater resource, thus indicating P enrichment and eutrophication status. The P concentration was observed to increase from intake through paddy fields to drainages, where high P was determined in drainages (0.02-1.65 mg/L) and fields (0.0-0.54 mg/L) compared to channels (0.01-0.13 mg/L) and intakes (0.01-0.04 mg/L). Furthermore, we determined appreciable amount of potentially toxic elements (PTEs) such as Cu, Pb, Cd and Cr in studied water samples. The high N, P, and PTEs in drainages indicate enrichment from agricultural fields leading to water quality degradation and contaminations (eutrophication). The study demonstrates that water quality in UA is degrading potentially due to paddy rice farming and other associated activities in the landscape. Thus, the current study recommends starting initiatives to monitor irrigation water quality in UA for better crop productivity, and improved quality of drainage re-entering downstream through the introduction of mandatory riparian buffer, revising irrigation practices, to include good agronomic practices (GAP) to ensure water quality and sustainability.


Asunto(s)
Ecosistema , Calidad del Agua , Agricultura , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Tanzanía
7.
Plants (Basel) ; 11(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35406877

RESUMEN

Flower-rich field margins provide habitats and food resources for natural enemies of pests (NEs), but their potential, particularly in the tropics and on smallholder farms, is poorly understood. We surveyed field margins for plant-NE interactions in bean fields. NEs most often interacted with Bidens pilosa (15.4% of all interactions) and Euphorbia heterophylla (11.3% of all interactions). In cage trials with an aphid-infested bean plant and a single flowering margin plant, the survival of Aphidius colemani, the most abundant parasitoid NE in bean fields, was greater in the presence of Euphorbia heterophylla than Bidens pilosa, Tagetes minuta, and Hyptis suaveolens. UV-fluorescent dye was applied to flowers of specific field margin plant species and NE sampled from within the bean crop and field margins using sweep-netting and pan-traps respectively. Captured insects were examined for the presence of the dye, indicative of a prior visit to the margin. Lady beetles and assassin bugs were most abundant in plots with B. pilosa margins; hoverflies with T. minuta and Parthenium hysterophorus margins; and lacewings with T. minuta and B. pilosa margins. Overall, NE benefitted from field margin plants, and those possessing extra floral nectaries had an added advantage. Field margin plants need careful selection to ensure benefits to different NE groups.

8.
Pest Manag Sci ; 78(3): 1109-1116, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34797017

RESUMEN

BACKGROUND: Hymenopteran parasitoids provide key natural pest regulation services and are reared commercially as biological control agents. Therefore, understanding parasitoid community composition in natural populations is important to enable better management for optimized natural pest regulation. We carried out a field study to understand the parasitoid community associated with Aphis fabae on East African smallholder farms. Either common bean (Phaseolus vulgaris) or lablab (Lablab purpureus) sentinel plants were infested with Aphis fabae and deployed in 96 fields across Kenya, Tanzania, and Malawi. RESULTS: A total of 463 parasitoids emerged from sentinel plants of which 424 were identified by mitochondrial cytochrome oxidase I (COI) barcoding. Aphidius colemani was abundant in Kenya, Tanzania and Malawi, while Lysiphlebus testaceipes was only present in Malawi. The identity of Aphidius colemani specimens were confirmed by sequencing LWRh and 16S genes and was selected for further genetic and population analyses. A total of 12 Aphidius colemani haplotypes were identified. Of these, nine were from our East African specimens and three from the Barcode of Life Database (BOLD). CONCLUSION: Aphidius colemani and Lysiphlebus testaceipes are potential targets for conservation biological control in tropical smallholder agro-ecosystems. We hypothesize that high genetic diversity in East African populations of Aphidius colemani suggests that this species originated in East Africa and has spread globally due to its use as a biological control agent. These East African populations could have potential for use as strains in commercial biological control or to improve existing Aphidius colemani strains by selective breeding.


Asunto(s)
Áfidos , Avispas , Animales , Áfidos/genética , Agentes de Control Biológico , Ecosistema , Control Biológico de Vectores
9.
Genet Resour Crop Evol ; 68(8): 3081-3101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34580565

RESUMEN

Lablab (Lablab purpureus) [Lablab purpureus (L.) Sweet] is termed a lost, underutilized and neglected crop in Africa. Despite the multipurpose use, production, consumption and research are still limited. Wide genetic diversity of lablab germplasm exists in Africa. Diversity studies provide significant information for subsequent research programs and improvement. The advent of genotyping and sequencing technologies has enabled the identification of unique and agronomically important traits. Application of next-generation sequencing on lablab as a pioneer orphan crop is currently underway. This has enabled description of the whole genome, generation of reference genome and resequencing that provide information on variation within the entire genome. Information from these technological advances helps in identifying potential traits for biotic and abiotic stress for further breeding programs. Storage pests specifically bruchids (Callosobruchus spp.), are considered a major obstacle in lablab production. Screening of available genotypes for bruchid resistance and studies on the physical and biochemical factors that confer resistance in lablab is required. Applying advanced technologies provides precise and reliable identification of the novel markers responsible for bruchid resistance allowing for introgression of important genes to breeding programs. This review provides a detailed analysis on the characterization of lablab and the information on bruchid resistance vital for breeding farmer-preferred varieties that possess agronomically beneficial traits. Concerted efforts and research on this neglected crop will enhance its production, utilization and consumption.

10.
Plants (Basel) ; 10(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34451642

RESUMEN

This research was conducted to evaluate the trends of the extractable micronutrients boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) in soils differing in textures and collected before tobacco cultivation, and in after unfertilized and fertilized (N10P18K24 and CAN 27%) plots. The soils and tobacco leaves were assessed on the contents of the micronutrients after unfertilized and fertilized tobacco cultivation. In soils, tobacco cultivation with fertilization increased the extractable Cu, Fe, Mn, and Zn by 0.10, 11.03, 8.86, and 0.08 mg kg-1, respectively, but decreased the extractable B by 0.04 mg kg-1. The effects of fertilization increased the extractable Cu, Fe, Mn, and Zn by 0.14, 14.29, 9.83, and 0.24 mg kg-1, respectively, but decreased B by 0.08 mg kg-1. The combination effects of tobacco cultivation and fertilization increased the extractable Cu, Fe, Mn, and Zn by 0.24, 25.32, 18.69, and 0.32 mg kg-1, respectively, but decreased the extractable B by 0.12 mg kg-1. The results revealed that the solubility of the extractable Zn, Mn, Cu, and Fe in soils were increased by both tobacco and fertilization, but the extractable B was decreased. The fertilization of the studied soils with NPK + CAN fertilizers significantly increased the concentration of the extractable micronutrients in tobacco leaves. Based on the findings of this study, further research must be conducted to investigate the effects of tobacco cultivation on soil health and fertility beyond considering only soil pH, SOC, micronutrients, and macronutrients. These studies should include the relationship between soil fertility (pH, texture, CEC, base saturation, etc.), micronutrients, and agronomic practices on the effect of tobacco cultivation on the extractability of B, Cu, Fe, Mn, and Zn.

11.
Environ Entomol ; 50(5): 1016-1027, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34382647

RESUMEN

Papaya (Carica papaya L.) production suffers from a multitude of abiotic and biotic constraints, among those are insect pests, diseases, and environmental conditions. One of the seriously damaging pests of papaya is invasive papaya mealybug, Paracoccus marginatus, which can inflict heavy yield loss if not contained. Little information on papaya mealybug species has been documented due to challenges in identification approaches to species level. The current approach is based on the morphological features which are restricted to the mealybug life cycle leading to unclear identification. In Sub-Saharan Africa, where a wide diversity of mealybug species exists, it is essential to have a correct identification of these insect species due to the specificity of control measures. Molecular identification could be the best way to identify the mealybug at the species level. Presently, farmers rely heavily on chemical pesticides as their only available option for papaya mealybug control. The overuse of pesticides due to insect waxy covering has led to the development of pesticide resistance and the negative impact on the local ecosystem. Alternatively, the use of plant essential oils (EOs) with adjuvant is suggested as the safe solution to papaya mealybug control as they contain a rich source of natural chemicals that dissolve the insect wax layer, causing the cell membrane to rupture eventually leading to death. This review provides current research knowledge about the papaya mealybug identification approaches and plant EOs from Sweet orange, garlic, castor, and adjuvant (isopropyl alcohol, and paraffin) as sustainable papaya mealybug management.


Asunto(s)
Carica , Aceites Volátiles , Animales , Ecosistema , Aceites de Plantas , Plantas
12.
Heliyon ; 7(8): e07745, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34430736

RESUMEN

Soil fertility determines crop growth, productivity and consequently determines land productivity and sustainability. Continuous crop production exploits plant nutrients from soils leading to plant nutrient imbalance, thus affecting soil productivity. This study was conducted to monitor soil fertility status in soils of Usangu agro-ecosystem to establish management strategies. To assess soil fertility status in Usangu agro-ecosystem in Southern Highland Tanzania; 0-30 cm depth soil samples were taken for organic carbon, soil pH, N, P, Ca, K, Mg, S, Al, and micronutrients such as Zn, Mn, Cu, Fe, and Cr analyses by various established standard analytical methods. The results indicated most micronutrients were available in the deficient amount in many studied sites except for Fe and Mn, which were observed to be above optimum requirement. Based on critical levels established in other areas, 90 % of the soils were ranked as N, P, K, and Mg deficient. The micronutrients (Cu, Fe, and Zn) were inadequate in all soils resulting in limited crop growth and productivity. A high concentration of trace metals was detected in agricultural soils, this might affect plant nutrients availability and leading to environmental contamination affecting land productivity and sustainability. The study found that Usangu agro-ecosystem has deprived of soil fertility leading to poor crop growth and productivity. The authors recommend the addition of supplemental materials rich in plant nutrients such as inorganic fertilizer, manure, crop residues, and treated wastes to improve soil fertility for improved productivity and land sustainability.

13.
Biology (Basel) ; 10(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440037

RESUMEN

Common bean (Phaseolus vulgaris) production and storage are limited by numerous constraints. Insect pests are often the most destructive. However, resource-constrained smallholders in sub-Saharan Africa (SSA) often do little to manage pests. Where farmers do use a control strategy, it typically relies on chemical pesticides, which have adverse effects on the wildlife, crop pollinators, natural enemies, mammals, and the development of resistance by pests. Nature-based solutions -in particular, using biological control agents with sustainable approaches that include biopesticides, resistant varieties, and cultural tools-are alternatives to chemical control. However, significant barriers to their adoption in SSA include a lack of field data and knowledge on the natural enemies of pests, safety, efficacy, the spectrum of activities, the availability and costs of biopesticides, the lack of sources of resistance for different cultivars, and spatial and temporal inconsistencies for cultural methods. Here, we critically review the control options for bean pests, particularly the black bean aphid (Aphis fabae) and pod borers (Maruca vitrata). We identified natural pest regulation as the option with the greatest potential for this farming system. We recommend that farmers adapt to using biological control due to its compatibility with other sustainable approaches, such as cultural tools, resistant varieties, and biopesticides for effective management, especially in SSA.

14.
Heliyon ; 7(7): e07514, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34296014

RESUMEN

The build-up of heavy metals (HM) in agricultural soils accelerates the HM uptake by plants, which could potentially affect food quality and food safety. Here we studied the status and bioaccumulation of HM from soils to plant parts (roots, stem, and grains) in Usangu agro-ecosystem-Tanzania. In total 68 soil samples and 42 rice plant samples from six irrigation schemes were studied. The concentrations of cadmium-Cd, chromium-Cr, copper-Cu, lead-Pb, zinc-Zn, nickel-Ni, and iron-Fe were determined to estimate accumulation, distribution, bioconcentration. Total soil HM concentration in soil and plant samples was determined by acid digestion. The concentration of HM in soils samples (in mg/kg) were Cr (4.58-42.76), Co (1.486-6.12), Fe (3513.56-12593.99), Zn (7.89-29.17), Cd (0.008-0.073), Cu (0.84-9.25), Ni (0.92-7.98), and Pb (1.82-18.86). The total HM concentration in plant samples were (in mg/kg) were Cu (5.18-33.56), Zn (57.03-120.88), Fe (963.51-27918.95), Mn (613.15-2280.98), Cd (4.3-17.46), Pb (0.01-28.25), Cr (12.88-57.34) and Ni (9.65-103.33). The concentration of HM in soil and plant parts was observed to vary among locations where high concentrations of HM were detected in stems and roots compared to grains. The ratio HM in plants and soil samples (bioconcentration) was higher than one for some sites indicating higher HM uptakes by plants leading to possible health risk to soil invertebrates, animals, and humans. The bioconcentration factor varied among schemes, with the highest values at Igalako and Mahongole, which could be caused by artisanal gold mining and mining quarry existed in the area. Therefore, steps are needed to reverse the situation to balance the HM in agricultural soils and plant tissues to be within acceptable limits.

15.
Sci Rep ; 11(1): 15190, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312457

RESUMEN

Beneficial insect communities on farms are influenced by site- and landscape-level factors, with pollinator and natural enemy populations often associated with semi-natural habitat remnants. They provide ecosystem services essential for all agroecosystems. For smallholders, natural pest regulation may be the only affordable and available option to manage pests. We evaluated the beneficial insect community on smallholder bean farms (Phaseolus vulgaris L.) and its relationship with the plant communities in field margins, including margin trees that are not associated with forest fragments. Using traps, botanical surveys and transect walks, we analysed the relationship between the floral diversity/composition of naturally regenerating field margins, and the beneficial insect abundance/diversity on smallholder farms, and the relationship with crop yield. More flower visits by potential pollinators and increased natural enemy abundance measures in fields with higher plant, and particularly tree, species richness, and these fields also saw improved crop yields. Many of the flower visitors to beans and potential natural enemy guilds also made use of non-crop plants, including pesticidal and medicinal plant species. Selective encouragement of plants delivering multiple benefits to farms can contribute to an ecological intensification approach. However, caution must be employed, as many plants in these systems are introduced species.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Granjas , Insectos/fisiología , Árboles , Animales , Biodiversidad , Producción de Cultivos/métodos , Flores , Bosques , Malaui , Phaseolus/crecimiento & desarrollo , Polinización , Simbiosis/fisiología , Tanzanía
16.
Chemosphere ; 284: 131410, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34323788

RESUMEN

Spatial distribution of Potentially Toxic Elements (PTEs) in agricultural soils in Usangu Basin (Mbeya Region)-Tanzania were conducted. The study included three land-use types (paddy farming, maize farming, and conserved community forest areas). About 198 soil samples were collected from November to December 2019 across contrasting land management schemes (Group I dominated by agricultural areas versus Group II dominated by residential and agricultural areas). Total (aqua regia extracts) and bioavailable (Mehlich 3 extracts) PTEs concentrations were analyzed. For Group I and II areas, total and bioavailable concentrations (mg/kg dry weight, mean values) of some PTEs were: chromium 1662 ± 5.2 µg/kg for Group I and 1307 ± 3.9 µg/kg for Group II (Total), 55.1 ± 37.1 µg/kg for Group I and 19.2 ± 21.6 µg/kg for Group II (bioavailable); and lead 5272 ± 1650 µg/kg for Group I and 6656 ± 1994 µg/kg for Group II (Total), 1870 ± 800 µg/kg for Group I and 1730 ± 530 µg/kg for Group II (bioavailable). Soil total PTEs such as cadmium and lead were generally lower in Group I areas than in Group II areas. The reverse scenario was observed for copper. Farming areas had high PTEs concentration than non-farming areas because of anthropogenic activities. Overall, soil total concentrations of Fe (99.5%), As (87%), Se (66%), and Hg (12%) were above Tanzanian Maximum Allowable Limits. This study provides essential baseline information to support environmental risk assessment of PTEs in Tanzanian agro-ecosystem.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Ecosistema , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Tanzanía
17.
J Environ Manage ; 294: 113012, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118517

RESUMEN

This study was conducted to assess arsenic (As) status and distribution in Usangu agroecosystem-Tanzania, including three land use. About 198 soil samples were collected in ten irrigation schemes in three land uses. Total and bioavailable As were determined by acid digestion (Aqua regia (AQ)) and Mehlich 3 method (M3) to estimate status, distribution and bioavailability. Arsenic concentration were variable among land use and irrigation schemes where total arsenic ranged 567.74-2909.84 µg/kg and bioavailable As ranged 26.17-712.37 µg/kg. About 12-16% of total arsenic were available for plant uptake. Approximately 86.53% of studied agricultural soils had total As concentration above Tanzania maximum allowable limit. Bioavailable As were lower compared to total As and were within the acceptable threshold. Total arsenic concentration were variable among schemes and higher values were observed in schemes which are highly intensified and mechanized. Thus, this study provides essential site specific preliminary baseline information for As status and distribution in agricultural soils to initiate monitoring and management strategies for increased land productivity and environmental safety.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Ecosistema , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Tanzanía
18.
J Environ Manage ; 294: 112973, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102465

RESUMEN

The dramatic increase in world population underpins current escalating food demand, which requires increased productivity in the available arable land through agricultural intensification. Agricultural intensification involves increased agrochemicals use to increase land productivity. Increased uses of agrochemicals pose environmental and ecological risks such as contamination and water eutrophication. Consequently, toxic metals accumulate in plant products, thus entering the food chain leading to health concerns. To achieve this study, secondary data from peer-reviewed papers, universities, and government authorities were collected from a public database using Tanzania as a case study. Data from Science Direct, Web of Science, and other internet sources were gathered using specific keywords such as nutrient saturation and losses, water eutrophication, potentially toxic metal (PTEs), and impact of toxic metals on soils, water, and food safety. The reported toxic metal concentrations in agro-ecosystem worldwide are linked to agricultural intensification, mining, and urbanization. Statistical analysis of secondary data collected from East African agro-ecosystem had wide range of toxic metals concentration such as; mercury (0.001-11.0 mg Hg/kg), copper (0.14-312 mg Cu/kg), cadmium (0.02-13.8 mg Cd/kg), zinc (0.27-19.30 mg Zn/kg), lead (0.75-51.7 mg Pb/kg) and chromium (19.14-34.9 mg Cr/kg). In some cases, metal concentrations were above the FAO/WHO maximum permissible limits for soil health. To achieve high agricultural productivity and environmental safety, key research-informed policy needs are proposed: (i) development of regulatory guidelines for agrochemicals uses, (ii) establishment of agro-environmental quality indicators for soils and water assessment to monitor agro-ecosystem quality changes, and (iii) adoption of best farming practices such as split fertilization, cover cropping, reduced tillage, drip irrigation to ensure crop productivity and agro-ecosystem sustainability. Therefore, robust and representative evaluation of current soil contamination status, sources, and processes leading to pollution are paramount. To achieve safe and sustainable food production, management of potential toxic metal in agro-ecosystems is vital.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Ecosistema , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Tanzanía
19.
Plants (Basel) ; 10(3)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806457

RESUMEN

Anthropogenic disturbances, such as illegal harvesting and livestock browsing, often affect natural forests. However, the resulting tree species diversity, composition, and population structure have rarely been quantified. We assessed tree species diversity and importance value indices and, in particular, Balanites aegyptiaca (L.) Del. population structure, across 100 sample plots of 25 m × 40 m in disturbed and non-disturbed sites at the Dinder Biosphere Reserve, Sudan, from April 2019 to April 2020. We found that the tree species diversity in non-disturbed sites was more than double that of disturbed sites (p < 0.001, T = 32.6), and seedlings and saplings comprised more than 72% of the entire tree population (F2,48 = 116.4, p = 0.034; F2,48 = 163.2, p = 0.021, respectively). The tree density of B. aegyptiaca in the disturbed site was less than half that of the non-disturbed site (p = 0.018, T = 2.6). Balanites aegyptiaca was seven times more aggregated in disturbed sites compared to more regularly spaced trees in non-disturbed sites (T = 39.3 and p < 0.001). The poor B. aegyptiaca population status of the disturbed site shows that the conservation of this vulnerable species is essential for a sustainable management and utilization scheme.

20.
Chemosphere ; 278: 130466, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33839385

RESUMEN

Phosphorus (P) is a vital plant macronutrient required for plant growth which usually available in limited amount. P availability for plant uptake in highly weathered soil is controlled by soil erosion and high fixation. The availability of P applied from fertilizers depend on the soil pH, soil sorption capacity (PSC) and P saturation status (PSD), which determines P storage, losses, fixation, and additional P to be added with minimal loss to the environment. PSC and PSD are agro-environmental indicators used to estimate P availability and P loss to the environment. However, PSC and PSD of agricultural soils had been never studied in Tanzanian soils. This study was conducted to assess and estimate P availability, PSC and PSD and the risks of P losses in tropical soils from Usangu basin popular for paddy farming. In total, 198 soil samples from 10 paddy irrigation schemes were collected (November-December 2019) and analyzed for inherent P (PM3), metal oxides of Aluminium (Al M3), iron (Fe M3), and calcium (Ca M3) as main PSC and PSD determinant. The determined concentrations were in range of; P M3 014.9-974.69 mg/kg, Al M3 234.56-3789.36 mg/kg, Fe M3 456.78-2980.23 mg/kg, and Ca M3 234.67-973.34 mg/kg. Estimated PSCM3 ranged 5.62-34.85 mmol/kg with a mean value of 14.14 mmol/kg corresponding to high status, ensuring high P holding capacity for plant uptake. However, some soils had very low PSCM3 creating a risk of P loss to environment. Among soils, the estimated PSD M3 ranged from 0.01 to 17.57% and was below (<24%), indicating low P loss risks to surface and groundwater, however, some soils were observed to have PSDM3 above 15% which correspond to a critical degree of phosphate saturation of 25% in a watershed using oxalate extraction method. Therefore some sites were associated with high P loss to the environment, immediate and precautionary actions for sustainable P management to increase productivity, environmental safety and sustainability are needed to be in place.


Asunto(s)
Contaminantes del Suelo , Suelo , Fosfatos , Fósforo , Contaminantes del Suelo/análisis , Tanzanía , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...