Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 9(4): 1199-1209, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30819821

RESUMEN

The root-knot nematode (RKN) species Meloidogyne incognita and M. javanica cause substantial root system damage and suppress yield of susceptible cowpea cultivars. The narrow-based genetic resistance conferred by the Rk gene, present in some commercial cultivars, is not effective against Rk-virulent populations found in several cowpea production areas. The dynamics of virulence within RKN populations require a broadening of the genetic base of resistance in elite cowpea cultivars. As part of this goal, F1 and F2 populations from the cross CB46-Null (susceptible) x FN-2-9-04 (resistant) were phenotyped for M. javanica induced root-galling (RG) and egg-mass production (EM) in controlled growth chamber and greenhouse infection assays. In addition, F[Formula: see text] families of the same cross were phenotyped for RG on field sites infested with Rk-avirulent M. incognita and M. javanica The response of F1 to RG and EM indicated that resistance to RKN in FN-2-9-04 is partially dominant, as supported by the degree of dominance in the F2 and F[Formula: see text] populations. Two QTL associated with both RG and EM resistance were detected on chromosomes Vu01 and Vu04. The QTL on Vu01 was most effective against aggressive M. javanica, whereas both QTL were effective against avirulent M. incognita Allelism tests with CB46 x FN-2-9-04 progeny indicated that these parents share the same RKN resistance locus on Vu04, but the strong, broad-based resistance in FN-2-9-04 is conferred by the additive effect of the novel resistance QTL on Vu01. This novel resistance in FN-2-9-04 is an important resource for broadening RKN resistance in elite cowpea cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Nematodos/fisiología , Vigna/genética , Animales , Mapeo Cromosómico , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo , Vigna/parasitología
2.
J Nematol ; 50(4): 545-558, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31094157

RESUMEN

Cowpea (Vigna unguiculata L. Walp) is an affordable source of protein and strategic legume crop for food security in Africa and other developing regions; however, damage from infection by root-knot nematodes (RKN) suppresses cowpea yield. The deployment through breeding of resistance gene Rk in cowpea cultivars has provided protection to cowpea growers worldwide for many years. However, occurrence of more aggressive nematode isolates threatens the effectiveness of this monogenic resistance. A cowpea germplasm collection of 48 genotypes representing the cowpea gene-pool from Eastern and Southern Africa (cowpea has two major pools of genetic resources - Western Africa and Eastern/Southern Africa) was screened in replicated experiments under field, greenhouse and controlled-growth conditions to identify resistance to RKN, to determine the spectrum of resistance to RKN, the relative virulence (VI) among RKN species and isolates, and the relationship between root-galling (RG) and egg-mass production (EM). Analysis of variance of data for RG and EM per root system identified seven genotypes with broad-based resistance to Meloidogyne javanica (Mj), avirulent (Avr-Mi), and virulent (Mi) M. incognita isolates. Two of the 48 genotypes exhibited specific resistance to both Mi isolates. Most of the genotypes were resistant to Avr-Mi indicating predominance of Rk gene in the collection. Based on RG data, both Mj (VI = 50%) and Mi (VI = 42%) were fourfold more virulent than Avr-Mi (VI = 12%). Resistant genotypes had more effective resistance than the Rk-based resistance in cowpea genotype CB46 against Mj and Mi. Root-galling was correlated across isolates (Avr-Mi/Mj: r = 0.72; Mi/Mj: r = 0.98), and RG was correlated with EM (r = 0.60), indicating resistance to RG and EM is under control by the same genetic factors. These new sources of resistance identified in cowpea gene-pool two provide valuable target traits for breeders to improve cowpea production on RKN-infested fields.Cowpea (Vigna unguiculata L. Walp) is an affordable source of protein and strategic legume crop for food security in Africa and other developing regions; however, damage from infection by root-knot nematodes (RKN) suppresses cowpea yield. The deployment through breeding of resistance gene Rk in cowpea cultivars has provided protection to cowpea growers worldwide for many years. However, occurrence of more aggressive nematode isolates threatens the effectiveness of this monogenic resistance. A cowpea germplasm collection of 48 genotypes representing the cowpea gene-pool from Eastern and Southern Africa (cowpea has two major pools of genetic resources ­ Western Africa and Eastern/Southern Africa) was screened in replicated experiments under field, greenhouse and controlled-growth conditions to identify resistance to RKN, to determine the spectrum of resistance to RKN, the relative virulence (VI) among RKN species and isolates, and the relationship between root-galling (RG) and egg-mass production (EM). Analysis of variance of data for RG and EM per root system identified seven genotypes with broad-based resistance to Meloidogyne javanica (Mj), avirulent (Avr-Mi), and virulent (Mi) M. incognita isolates. Two of the 48 genotypes exhibited specific resistance to both Mi isolates. Most of the genotypes were resistant to Avr-Mi indicating predominance of Rk gene in the collection. Based on RG data, both Mj (VI = 50%) and Mi (VI = 42%) were fourfold more virulent than Avr-Mi (VI = 12%). Resistant genotypes had more effective resistance than the Rk-based resistance in cowpea genotype CB46 against Mj and Mi. Root-galling was correlated across isolates (Avr-Mi/Mj: r = 0.72; Mi/Mj: r = 0.98), and RG was correlated with EM (r = 0.60), indicating resistance to RG and EM is under control by the same genetic factors. These new sources of resistance identified in cowpea gene-pool two provide valuable target traits for breeders to improve cowpea production on RKN-infested fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA