Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Genet ; 19(9): e1010910, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708213

RESUMEN

Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Humanos , Sistema del Grupo Sanguíneo ABO/genética , Plasmodium falciparum/genética , Estudios de Casos y Controles , Kenia , Genotipo , Malaria Falciparum/genética
2.
BMJ Open ; 13(7): e068260, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524553

RESUMEN

BACKGROUND: Acute kidney injury (AKI) has in the past been considered a rare complication of malaria in children living in high-transmission settings. More recently, however, a growing number of paediatric case series of AKI in severe malaria studies in African children have been published (Artesunate vs Quinine in the Treatment of Severe P. falciparum Malaria in African children and Fluids Expansion as Supportive Therapy trials). The Paracetamol for Acute Renal Injury in Severe Malaria Trial (PARIST) therefore, aims to assess feasibility, safety and determine the effective dose of paracetamol, which attenuates nephrotoxicity of haemoproteins, red-cell free haemoglobin and myoglobin in children with haemoglobinuric severe malaria. METHODS: PARIST is a phase I/II unblinded randomised controlled trial of 40 children aged >6 months and <12 years admitted with confirmed haemoglobinuric severe malaria (blackwater fever), a positive blood smear for P. falciparum malaria and either serum creatinine (Cr) increase by ≥0.3 mg/dL within 48 hours or to ≥1.5 times baseline and elevated blood urea nitrogen (BUN) >20 mg/dL. Children will be randomly allocated on a 1:1 basis to paracetamol intervention dose arm (20 mg/kg orally 6-hourly for 48 hours) or to a control arm to receive standard of care for temperature control (ie, tepid sponging for 30 min if fever persists give rescue treatment). Primary outcome is renal recovery at 48 hours as indicated by stoppage of progression and decrease of Cr level below baseline, BUN (<20 mg/dL). Data analysis will be on the intention-to-treat principle and a per-protocol basis.Results from this phase I/II clinical trial will provide preliminary effectiveness data of this highly potential treatment for AKI in paediatric malaria (in particular for haemoglobinuric severe malaria) for a larger phase III trial. ETHICS AND DISSEMINATION: Ethical and regulatory approvals have been granted by the Mbale Hospital Institutional Ethics Review Committee (MRRH-REC OUT 002/2019), Uganda National Council of Science and Technology (UNCST-HS965ES) and the National drug Authority (NDA-CTC 0166/2021). We will be disseminating results through journals, conferences and policy briefs to policy makers and primary care providers. TRIAL REGISTRATION NUMBER: ISRCTN84974248.


Asunto(s)
Lesión Renal Aguda , Malaria Falciparum , Malaria , Humanos , Niño , Acetaminofén/uso terapéutico , Estudios de Factibilidad , Uganda , Malaria/tratamiento farmacológico , Malaria Falciparum/complicaciones , Malaria Falciparum/tratamiento farmacológico , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/complicaciones , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto
3.
Pan Afr Med J ; 46: 60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38223876

RESUMEN

Introduction: accreditation is the most effective approach to ensure the quality of services. Laboratory performance can be evaluated using the World Health Organization (WHO)-SLIPTA checklist, which checks a laboratory´s compliance with ISO 15189 on a five-star score scale and improved using the SLMTA approach. Compliance is assessed by an external body and can result in accreditation. In this paper, we describe the steps taken by the Kenya Medical Research Institute (KEMRI) HIV Laboratory, Alupe, a resource-limited public entity, towards accreditation, and discuss the lessons learned. Methods: the laboratory adopted a SLMTA-SLIPTA approach that included targeted mentorship, on-site workshops, and training. Mentorship-based interventions were used to establish a robust quality management system. Targeted mentorship, on-site workshops, and training were conducted between September 2015 and July 2016. Audits used the SLIPTA checklist to detect gaps in 12 quality system essentials. Performance indicators including turnaround time, external quality assurance, sample rejection rates, and corrective actions were tracked. An external assessment by the national accreditation body was conducted between September 2016 and November 2016. Results: training and mentorship-based interventions were successfully conducted. Quality management systems aligned with ISO 15189 were established. Baseline, midterm, and exit audits yielded scores of 47%, 75%, and 94% respectively. Early infant diagnosis external quality assurance scores were 100% in 2014-2016, while average viral load scores were at 60%, 70% and 90% during the same period. Turnaround time from September 2015 surpassed the 80% target. Accreditation was awarded in March 2017. Conclusion: the SLMTA-SLIPTA approach is suitable for quality improvement in resource-limited laboratories.


Asunto(s)
Infecciones por VIH , Laboratorios , Humanos , Control de Calidad , Kenia , Mejoramiento de la Calidad , Ciencia de la Implementación , Acreditación , Infecciones por VIH/diagnóstico
4.
BMJ Open ; 12(7): e059875, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35793920

RESUMEN

INTRODUCTION: Blackwater fever (BWF), a complication of malaria, has in the past been considered as a rare complication of malaria in children living in high transmission settings. More recently, however, a growing number of paediatric clusters of BWF cases have been reported predominantly in sub-Saharan Africa (SSA). The aim of this study is to map evidence on BWF among children in SSA from 1 January 1960 to 31 December 2021. METHODS AND ANALYSIS: This review will be guided by Arksey and O' Malley's methodological framework for scoping reviews with methodological refinements by Levac et al and will comply with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews' guidelines. Five electronic databases (MEDLINE via PubMed, Embase, the Cochrane Library, the Cumulative Index to Nursing and Allied Health Literature (CINAHL) and PsycINFO) will be systematically searched using predefined keywords. In addition, reference lists of included articles will be searched. Our multidisciplinary team has formulated search strategies and two reviewers will independently complete study eligibility screening, final selection and data extraction. A third reviewer will adjudicate the final decision on disputed articles. Bibliographic data and abstract content will be collected and analysed using a data-charting tool developed iteratively by the research team. ETHICS AND DISSEMINATION: This scoping review being a secondary analysis does not require ethics approval. We anticipate results of this review will broaden understanding of paediatric BWF in SSA and identify its research gaps in SSA. We will be disseminating results through journals and conferences targeting primary care providers.


Asunto(s)
Fiebre Hemoglobinúrica , África del Sur del Sahara/epidemiología , Niño , Humanos , Tamizaje Masivo , Revisiones Sistemáticas como Asunto
5.
Elife ; 112022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35866869

RESUMEN

Invasive bacterial disease is a major cause of morbidity and mortality in African children. Despite being caused by diverse pathogens, children with sepsis are clinically indistinguishable from one another. In spite of this, most genetic susceptibility loci for invasive infection that have been discovered to date are pathogen specific and are not therefore suggestive of a shared genetic architecture of bacterial sepsis. Here, we utilise probabilistic diagnostic models to identify children with a high probability of invasive bacterial disease among critically unwell Kenyan children with Plasmodium falciparum parasitaemia. We construct a joint dataset including 1445 bacteraemia cases and 1143 severe malaria cases, and population controls, among critically unwell Kenyan children that have previously been genotyped for human genetic variation. Using these data, we perform a cross-trait genome-wide association study of invasive bacterial infection, weighting cases according to their probability of bacterial disease. In doing so, we identify and validate a novel risk locus for invasive infection secondary to multiple bacterial pathogens, that has no apparent effect on malaria risk. The locus identified modifies splicing of BIRC6 in stimulated monocytes, implicating regulation of apoptosis and autophagy in the pathogenesis of sepsis in Kenyan children.


Bacterial infections are a major cause of severe illness and death in African children. Understanding which children are at risk of life-threatening infection and why, is key to designing new tools to help protect them. Some risk is likely inherited, but scientists do not know which genes are responsible. Genome-wide association studies (GWAS) may be one way to identify bacterial infection risk genes. GWAS look for genetic differences associated with a particular disease. But previous GWAS studies have failed to find genes linked with bacterial infections in African children because they were too small. Malaria is another frequent cause of life-threatening illness in African children. It can be hard for clinicians to determine if a child's illness is caused by malaria, a bacterial infection, or both. Many children in Africa have malaria parasites in their blood, but they do not always cause disease. Most children with suspected severe malaria are treated with antibiotics in case of bacterial infection. Clinicians may then conduct further testing to determine the illness's actual cause. Scientists may be able to use this data on children with suspected malaria to study bacterial infections. Gilchrist et al. show that children with an unusual alteration in the BIRC6 gene are at increased risk of bacterial infections. In the experiments, Gilchrist et al. used computer modeling to identify a subset of children with likely bacterial infections among 2,200 children admitted to a hospital in Kenya with a high fever and malaria parasites. By combining information on this subset of children with data on children with confirmed bacterial infections and healthy children, Gilchrist created a sample of 5,400 children for a GWAS. The analyses found that children with a variation in the BIRC6 gene on chromosome 2 had a higher risk of bacterial infections. This genetic change is linked with the production of a modified form of BIRC6 in infection-fighting immune cells called monocytes. More studies will help scientists understand how this change might contribute to severe bacterial infections. Learning more may help scientists develop new treatment strategies and identify children most at risk.


Asunto(s)
Bacteriemia , Infecciones Bacterianas , Malaria , Bacteriemia/microbiología , Niño , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Inhibidoras de la Apoptosis , Kenia/epidemiología , Malaria/complicaciones , Malaria/epidemiología
6.
Glob Health Res Policy ; 7(1): 11, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35478077

RESUMEN

BACKGROUND: Virtual global health partnership initiatives (VGHPIs) evolved rapidly during the COVID-19 pandemic to ensure partnership continuity. However the current landscape for VGHPI use and preference is unknown. This study aimed to increase understanding of GH partners' perspectives on VGHPIs. METHODS: From 15 October to 30 November 2020, An online, international survey was conducted using snowball sampling to document pandemic-related changes in partnership activities, preferences for VGHPIs, and perceived acceptability and barriers. The survey underwent iterative development within a diverse author group, representing academic and clinical institutions, and the non-profit sector. Participants from their professional global health networks were invited, including focal points for global health partnerships while excluding trainees and respondents from the European Economic Area. Analysis stratified responses by country income classification and partnership type. Authors used descriptive statistics to characterize responses, defining statistical significance as α = 0.05. RESULTS: A total of 128 respondents described 219 partnerships. 152/219 (69%) partnerships were transnational, 157/219 (72%) were of > 5 years duration, and 127/219 (60%) included bidirectional site visits. High-income country (HIC) partners sent significantly more learners to low- to middle-income country (LMIC) partner sites (p < 0.01). Participants commented on pandemic-related disruptions affecting 217/219 (99%) partnerships; 195/217 (90%) were disruption to activities; 122/217 (56%) to communication; 73/217 (34%) to access to professional support; and 72/217 (33%) to funding. Respondents indicated that VGHPIs would be important to 206/219 (94%) of their partnerships moving forward. There were overall differences in resource availability, technological capacity, and VGHPI preferences between LMIC and HIC respondents, with a statistically significant difference in VGHPI acceptability (p < 0.001). There was no significant difference between groups regarding VGHPIs' perceived barriers. CONCLUSIONS: The pandemic disrupted essential partnership elements, compounding differences between LMIC and HIC partners in their resources and preferences for partnership activities. VGHPIs have the potential to bridge new and existing gaps and maximize gains, bi-directionality, and equity in partnerships during and after COVID-19.


Asunto(s)
COVID-19 , Salud Global , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Transversales , Humanos , Cooperación Internacional , Pandemias
7.
Trop Doct ; 52(1): 61-67, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34939462

RESUMEN

Our study aimed at determining clinical factors associated with prolonged hospitalisation and death among children admitted with blackwater fever (BWF). We analysed 920 eligible records for the period January - December 2018 from Mbale and Soroti Regional Referral Hospitals in Eastern Uganda. The median hospitalisation was 3 (IQR: 2-5 days) days. Prolonged hospitalisation was in 251/920 (27.3%). Clinical features independently associated with prolonged hospitalisation included abdominal tenderness, body pain and mild fever. 29/920 (3.2%) died, of these 20 (69.0%) within 48 h of admission. Features of severity associated with mortality were noisy or interrupted breathing, tachypnoea, chest pain, convulsions, delayed capillary refill time (≥3 s), severe pallor, high fever (>38.5°C), altered level of consciousness, prostration and acidotic breathing.


Asunto(s)
Fiebre Hemoglobinúrica , Niño , Fiebre , Hospitalización , Hospitales , Humanos , Uganda/epidemiología
8.
Nature ; 602(7895): 106-111, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34883497

RESUMEN

Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations.


Asunto(s)
Genotipo , Hemoglobina Falciforme/genética , Adaptación al Huésped/genética , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Parásitos/genética , Plasmodium falciparum/genética , Alelos , Animales , Niño , Femenino , Gambia/epidemiología , Genes Protozoarios/genética , Humanos , Kenia/epidemiología , Desequilibrio de Ligamiento , Malaria Falciparum/epidemiología , Masculino , Polimorfismo Genético
9.
Elife ; 102021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34225842

RESUMEN

Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.


In areas of sub-Saharan Africa where malaria is common, most people are frequently exposed to the bites of mosquitoes carrying malaria parasites, so they often have malaria parasites in their blood. Young children, who have not yet built up strong immunity against malaria, often fall ill with severe malaria, a life-threatening disease. It is unclear why some children develop severe malaria and die, while other children with high numbers of parasites in their blood do not develop any apparent symptoms. Genetic susceptibility studies are designed to uncover why such differences exist by comparing individuals with severe malaria (referred to as 'cases') with individuals drawn from the general population (known as 'controls'). But severe malaria can be a challenge to diagnose. Since high numbers of malaria parasites can be found in healthy children, it is sometimes difficult to determine whether the parasites are making a child ill, or whether they are a coincidental finding. Consequently, some of the 'cases' recruited into these studies may actually have a different disease, such as bacterial sepsis. This ultimately affects how the studies are interpreted, and introduces error and inaccuracy into the data. Watson, Ndila et al. investigated whether measuring blood biomarkers in patients (derived from the complete blood count, including platelet counts and white blood cell counts) could improve the accuracy with which malaria is diagnosed. They developed a new mathematical model that incorporates platelet and white blood cell counts. This model estimates that in a large cohort of 2,220 Kenyan children diagnosed with severe malaria, around one third of enrolled children did not actually have this disease. Further analysis suggests that patients with severe malaria are highly unlikely to have platelet counts higher than 200,000 per microlitre. This defines a cut-off that researchers can use to avoid recruiting patients who do not have severe malaria in future studies. Additionally, the ability to diagnose severe malaria more accurately can make it easier to detect and treat other diseases with similar symptoms in children with high numbers of malaria parasites in their blood. Watson, Ndila et al.'s findings support the recommendation that all children with suspected malaria be given broad spectrum antibiotics, as many misdiagnosed children will likely have bacterial sepsis. It also suggests that using complete blood counts, which are cheap to obtain and increasingly available in low-resource settings, could improve diagnostic accuracy in future clinical studies of severe malaria. This could ultimately improve the ability of these studies to find new treatments for this life-threatening disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Malaria , Fenotipo , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de la Matriz Extracelular/genética , Femenino , Genómica , Humanos , Kenia , Malaria/diagnóstico , Malaria/epidemiología , Malaria Falciparum , Masculino , Polimorfismo Genético
10.
Blood Adv ; 4(23): 5942-5950, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33275767

RESUMEN

Few previous studies have reported the effects of glucose-6-phosphate dehydrogenase (G6PD)-deficiency on child health in Africa. We conducted a case-control study in which cases (n = 6829) were children admitted, for any reason, to Kilifi County Hospital, Kenya, while controls (n = 10 179) were recruited from the surrounding community. Cases were subclassified based on their clinical and laboratory findings at admission. We calculated the prevalence of specific diseases by G6PD c.202 genotype, the only significant cause of G6PD-deficiency in this area, then estimated the association between genotype and admission with specific conditions using logistic regression.  Among neonates, the prevalence of jaundice was higher in both G6PD c.202T heterozygotes (40/88; 45.5%; P = .004) and homo/hemizygotes (81/134; 60.5%; P < .0001) than in wild-type homozygotes (157/526; 29.9%). Median bilirubin levels also increased across the groups, being highest (239 mmol/L; interquartile range 96-390 mmol/L) in G6PD c.202T homo/hemizygotes. No differences were seen in admission hemoglobin concentrations or the prevalence of anemia or severe anemia by G6PD c.202 genotype. On case control analysis, G6PD heterozygosity was negatively associated with all-cause hospital admission (odds ratio 0.81; 95% confidence interval 0.73-0.90; P < .0001) and, specifically, admission with either pneumonia or Plasmodium falciparum parasitemia; while, conversely, it was positively associated with Gram-positive bacteremia. G6PD c.202T homo/heterozygosity was positively associated with neonatal jaundice, severe pneumonia, the receipt of a transfusion, and in-patient death. Our study supports the conclusion that G6PD c.202T is a balanced polymorphism in which a selective advantage afforded to heterozygous females against malaria is counterbalanced by increased risks of neonatal jaundice, invasive bacterial infections, and anemia.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Estudios de Casos y Controles , Niño , Femenino , Genotipo , Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Humanos , Recién Nacido , Kenia/epidemiología
11.
Malar J ; 19(1): 322, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883291

RESUMEN

BACKGROUND: Few recent descriptions of severe childhood malaria have been published from high-transmission regions. In the current study, the clinical epidemiology of severe malaria in Mbale, Eastern Uganda, is described, where the entomological inoculation rate exceeds 100 infective bites per year. METHODS: A prospective descriptive study was conducted to determine the prevalence, clinical spectrum and outcome of severe Plasmodium falciparum malaria at Mbale Regional Referral Hospital in Eastern Uganda. All children aged 2 months-12 years who presented on Mondays to Fridays between 8.00 am and 5.00 pm from 5th May 2011 until 30th April 2012 were screened for parasitaemia. Clinical and laboratory data were then collected from all P. falciparum positive children with features of WHO-defined severe malaria by use of a standardized proforma. RESULTS: A total of 10 208 children were screened of which 6582 (64%) had a positive blood film. Of these children, 662 (10%) had clinical features of severe malaria and were consented for the current study. Respiratory distress was the most common severity feature (554; 83.7%), while 365/585 (62.4%) had hyperparasitaemia, 177/662 (26.7%) had clinical jaundice, 169 (25.5%) had severe anaemia, 134/660 (20.2%) had hyperlactataemia (lactate ≥ 5 mmol/L), 93 (14.0%) had passed dark red or black urine, 52 (7.9%) had impaired consciousness and 49/662 (7.4%) had hypoxaemia (oxygen saturations < 90%). In-hospital mortality was 63/662 (9.5%) overall but was higher in children with either cerebral malaria (33.3%) or severe anaemia (19.5%). Factors that were independently associated with mortality on multivariate analysis included severe anaemia [odds ratio (OR) 5.36; 2.16-1.32; P = 0.0002], hyperlactataemia (OR 3.66; 1.72-7.80; P = 0.001), hypoxaemia (OR) 3.64 (95% CI 1.39-9.52; P = 0.008), and hepatomegaly (OR 2.29; 1.29-4.06; P = 0.004). No independent association was found between mortality and either coma or hyperparasitaemia. CONCLUSIONS: Severe childhood malaria remains common in Eastern Uganda where it continues to be associated with high mortality. An unusually high proportion of children with severe malaria had jaundice or gave a history of having recently passed dark red or black urine, an issue worthy of further investigation.


Asunto(s)
Anemia/epidemiología , Malaria Cerebral/epidemiología , Malaria Falciparum/epidemiología , Parasitemia/epidemiología , Anemia/complicaciones , Anemia/mortalidad , Anemia/parasitología , Niño , Preescolar , Femenino , Hospitales , Humanos , Lactante , Malaria Cerebral/complicaciones , Malaria Cerebral/mortalidad , Malaria Cerebral/parasitología , Malaria Falciparum/complicaciones , Malaria Falciparum/mortalidad , Malaria Falciparum/parasitología , Masculino , Parasitemia/complicaciones , Parasitemia/mortalidad , Parasitemia/parasitología , Prevalencia , Estudios Prospectivos , Uganda/epidemiología
12.
Wellcome Open Res ; 5: 87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802962

RESUMEN

Background: In Uganda to date, there are neither established registries nor descriptions of facility-based sickle cell disease (SCD) patient characteristics beyond the central region. Here, we summarize data on the baseline clinical characteristics and routine care available to patients at four clinics in Eastern Uganda as a prelude to a clinical trial. Methods: Between February and August 2018, we conducted a cross-sectional survey of patients attending four SCD clinics in Mbale, Soroti, Atutur and Ngora, all in Eastern Uganda, the planned sites for an upcoming clinical trial (H-PRIME:  ISRCTN15724013). Data on socio-demographic characteristics, diagnostic methods, clinic schedules, the use of prophylactic and therapeutic drugs, clinical complications and patient understanding of SCD were collected using a structured questionnaire. Results: Data were collected on 1829 patients. Their ages ranged from 0 to 64 years with a median (IQR) of 6 (3-11) years. 49.1% of participants were male. The majority (1151; 62.9%) reported a positive family history for SCD. Approximately half knew that SCD is inherited from both parents but a substantial proportion did not know how SCD is transmitted and small numbers believed that it is acquired by either transfusion or from other people. Only 118/1819 (6.5%) participants had heard about or were using hydroxyurea while 356/1794 (19.8%) reported stigmatization. Participants reported a median of three (IQR 1-4) hospital admissions during the preceding 12 months; 80.8% had been admitted at least once, while 14.2% had been admitted more than five times. Pain was the most common symptom, while 83.9% of those admitted had received at least one blood transfusion. Conclusion: The majority of patients attending SCD clinics in Eastern Uganda are children and few are currently being treated with hydroxyurea. The data collected through this facility-based survey will provide background data that will be useful in planning for the H-PRIME trial.

13.
Mol Genet Genomic Med ; 8(7): e1294, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32394645

RESUMEN

BACKGROUND: ß-Thalassemia is rare in sub-Saharan Africa. Previous studies have suggested that it is limited to specific parts of West Africa. Based on hemoglobin A2 (HbA2 ) concentrations measured by HPLC, we recently speculated that ß-thalassemia might also be present on the East African coast of Kenya. Here, we follow this up using molecular methods. METHODS: We used raised hemoglobin A2 (HbA2 ) values (> 4.0% of total Hb) to target all HbAA members of a cohort study in Kilifi, Kenya, for HBB sequencing for ß-thalassemia (n = 99) together with a sample of HbAA subjects with lower HbA2 levels. Because HbA2 values are artifactually raised in subjects carrying sickle hemoglobin (HbS) we sequenced all participants with an HPLC pattern showing HbS without HbA (n = 116) and a sample with a pattern showing both HbA and HbS. RESULTS: Overall, we identified 83 carriers of four separate ß-thalassemia pathogenic variants: three ß0 -thalassemia [CD22 (GAA→TAA), initiation codon (ATG→ACG), and IVS1-3' end del 25bp] and one ß+ -thalassemia pathogenic variants (IVS-I-110 (G→A)). We estimated the minimum allele frequency of all variants combined within the study population at 0.3%. CONCLUSIONS: ß-Thalassemia is present in Kilifi, Kenya, an observation that has implications for the diagnosis and clinical care of children from the East Africa region.


Asunto(s)
Frecuencia de los Genes , Hemoglobina A/genética , Talasemia beta/genética , Niño , Femenino , Heterocigoto , Humanos , Kenia , Masculino , Polimorfismo de Nucleótido Simple
14.
Wellcome Open Res ; 5: 287, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34632085

RESUMEN

Background: The -α 3.7I-thalassaemia deletion is very common throughout Africa because it protects against malaria. When undertaking studies to investigate human genetic adaptations to malaria or other diseases, it is important to account for any confounding effects of α-thalassaemia to rule out spurious associations. Methods: In this study we have used direct α-thalassaemia genotyping to understand why GWAS data from a large malaria association study in Kilifi Kenya did not identify the α-thalassaemia signal. We then explored the potential use of a number of new approaches to using GWAS data for imputing α-thalassaemia as an alternative to direct genotyping by PCR. Results: We found very low linkage-disequilibrium of the directly typed data with the GWAS SNP markers around α-thalassaemia and across the haemoglobin-alpha ( HBA) gene region, which along with a complex haplotype structure, could explain the lack of an association signal from the GWAS SNP data. Some indirect typing methods gave results that were in broad agreement with those derived from direct genotyping and could identify an association signal, but none were sufficiently accurate to allow correct interpretation compared with direct typing, leading to confusing or erroneous results. Conclusions: We conclude that going forwards, direct typing methods such as PCR will still be required to account for α-thalassaemia in GWAS studies.

15.
Lancet Glob Health ; 7(10): e1458-e1466, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451441

RESUMEN

BACKGROUND: Sickle cell disease is the most common severe monogenic disorder in humans. In Africa, 50-90% of children born with sickle cell disease die before they reach their fifth birthday. In this study, we aimed to describe the comparative incidence of specific clinical outcomes among children aged between birth and 5 years with and without sickle cell disease, who were resident within the Kilifi area of Kenya. METHODS: This prospective cohort study was done on members of the Kilifi Genetic Birth Cohort Study (KGBCS) on the Indian Ocean coast of Kenya. Recruitment to the study was facilitated through the Kilifi Health and Demographic Surveillance System (KHDSS), which covers a resident population of 260 000 people, and was undertaken between Jan 1, 2006, and April 30, 2011. All children who were born within the KHDSS area and who were aged 3-12 months during the recruitment period were eligible for inclusion. Participants were tested for sickle cell disease and followed up for survival status and disease-specific admission to Kilifi County Hospital by passive surveillance until their fifth birthday. Children with sickle cell disease were offered confirmatory testing and care at a dedicated outpatient clinic. FINDINGS: 15 737 infants were recruited successfully to the KGBCS, and 128 (0·8%) of these infants had sickle cell disease, of whom 70 (54·7%) enrolled at the outpatient clinic within 12 months of recruitment. Mortality was higher in children with sickle cell disease (58 per 1000 person-years of observation, 95% CI 40-86) than in those without sickle cell disease (2·4 per 1000 person-years of observation, 2·0-2·8; adjusted incidence rate ratio [IRR] 23·1, 95% CI 15·1-35·3). Among children with sickle cell disease, mortality was lower in those who enrolled at the clinic (adjusted IRR 0·26, 95% CI 0·11-0·62) and in those with higher levels of haemoglobin F (HbF; adjusted IRR 0·40, 0·17-0·94). The incidence of admission to hospital was also higher in children with sickle cell disease than in children without sickle cell disease (210 per 1000 person-years of observation, 95% CI 174-253, vs 43 per 1000 person-years of observation, 42-45; adjusted IRR 4·80, 95% CI 3·84-6·15). The most common reason for admission to hospital among those with sickle cell disease was severe anaemia (incidence 48 per 1000 person-years of observation, 95% CI 32-71). Admission to hospital was lower in those with a recruitment HbF level above the median (IRR 0·43, 95% CI 0·24-0·78; p=0·005) and those who were homozygous for α-thalassaemia (0·07, 0·01-0·83; p=0·035). INTERPRETATION: Although morbidity and mortality were high in young children with sickle cell disease in this Kenyan cohort, both were reduced by early diagnosis and supportive care. The emphasis must now move towards early detection and prevention of long-term complications of sickle cell disease. FUNDING: Wellcome Trust.


Asunto(s)
Anemia de Células Falciformes/epidemiología , Preescolar , Humanos , Incidencia , Lactante , Recién Nacido , Kenia/epidemiología , Estudios Prospectivos
16.
Nat Commun ; 10(1): 856, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787300

RESUMEN

Most estimates of the burden of malaria are based on its direct impacts; however, its true burden is likely to be greater because of its wider effects on overall health. Here we estimate the indirect impact of malaria on children's health in a case-control study, using the sickle cell trait (HbAS), a condition associated with a high degree of specific malaria resistance, as a proxy indicator for an effective intervention. We estimate the odds ratios for HbAS among cases (all children admitted to Kilifi County Hospital during 2000-2004) versus community controls. As expected, HbAS protects strongly against malaria admissions (aOR 0.26; 95%CI 0.22-0.31), but it also protects against other syndromes, including neonatal conditions (aOR 0.79; 0.67-0.93), bacteraemia (aOR 0.69; 0.54-0.88) and severe malnutrition (aOR 0.67; 0.55-0.83). The wider health impacts of malaria should be considered when estimating the potential added benefits of effective malaria interventions.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Hemoglobina Falciforme/inmunología , Malaria Falciparum/inmunología , Rasgo Drepanocítico/inmunología , Bacteriemia/inmunología , Estudios de Casos y Controles , Preescolar , Genotipo , Hemoglobina Falciforme/genética , Humanos , Lactante , Malaria Falciparum/parasitología , Desnutrición/inmunología , Oportunidad Relativa , Admisión del Paciente/estadística & datos numéricos , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Rasgo Drepanocítico/genética
18.
Lancet Haematol ; 5(8): e333-e345, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30033078

RESUMEN

BACKGROUND: Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms-many related to the structure or function of red blood cells-and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. METHODS: We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. FINDINGS: Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11-0·20; p=2·61 × 10-58), blood group O (0·74, 0·66-0·82; p=6·26 × 10-8), and -α3·7-thalassaemia (0·83, 0·76-0·90; p=2·06 × 10-6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63-0·92; p=0·001) and FREM3 (0·64, 0·53-0·79; p=3·18 × 10-14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49-0·68; p=3·22 × 10-11), as was homozygosity (0·26, 0·11-0·62; p=0·002). INTERPRETATION: Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. FUNDING: Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill & Melinda Gates Grand Challenges in Global Health Initiative.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Malaria/genética , Polimorfismo Genético , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Frecuencia de los Genes , Humanos , Kenia , Masculino
19.
Elife ; 72018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29690995

RESUMEN

Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One (CR1) gene, named Sl2 and McCb, occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we estimate the relationship between Sl2 and McCb and malaria phenotypes, and find they have opposing associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McCb polymorphism is associated with increased odds of cerebral malaria. We also identify an apparent interaction between Sl2 and α+thalassaemia, with the protective association of Sl2 greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, highlighting the importance of considering genetic interactions in disease-association studies.


Asunto(s)
Malaria Cerebral/genética , Malaria Cerebral/patología , Polimorfismo Genético , Receptores de Complemento 3b/genética , Talasemia alfa/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Kenia , Masculino , Malí , Modelos Estadísticos
20.
Wellcome Open Res ; 3: 130, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30854471

RESUMEN

Background: Severe anaemia in children requiring hospital admission is a major public health problem in malaria-endemic Africa. Affordable methods for the assessment of haemoglobin have not been validated against gold standard measures for identifying those with severe anaemia requiring a blood transfusion, despite this resource being in short supply. Methods: We conducted a prospective descriptive study of hospitalized children aged 2 months - 12 years at Mbale and Soroti Regional Referral Hospitals, assessed to have pallor at triage by a nurse and two clinicians. Haemoglobin levels were measured using the HemoCue ® Hb 301 system (gold standard); the Haemoglobin Colour Scale; Colorimetric and Sahli's methods. We report clinical assessments of the degree of pallor, clinicians' intention to transfuse, inter-observer agreement, limits of agreement using the Bland-Altman method, and the sensitivity and specificity of each method in comparison to HemoCue ® Results: We recruited 322 children, clinically-assessed by the admitting nurse (n=314) as having severe (166; 51.6%), moderate (97; 30.1%) or mild (51; 15.8%) pallor. Agreement between the clinicians and the nurse were good: Clinician A Kappa=0.68 (0.60-0.76) and Clinician B Kappa=0.62 (0.53-0.71) respectively ( P<0.0001 for both). The nurse, clinicians A and B indicated that of 94/116 (81.0%), 83/121 (68.6%) and 93/120 (77.5%) respectively required transfusion. HemoCue ® readings indicated anaemia as mild (Hb10.0-11.9g/dl) in 8/292 (2.7%), moderate (Hb5.0-9.9g/dl) in 132/292 (45.2%) and severe (Hb<5.0g/dl) in 152/292 (52.1%). Comparing to HemoCue® the Sahli's method performed best in estimation of severe anaemia, with sensitivity 84.0% and specificity 87.9% and a Kappa score of  0.70 (0.64-0.80). Conclusions: Clinical assessment of severe pallor results has a low specificity for the diagnosis of severe anaemia. To target blood transfusion Hb measurement by either Hemocue® or Sahli's method for the cost of USD 4 or and USD 0.25 per test, respectively would be more cost-effective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...