Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838628

RESUMEN

The aim of the present study was to assess the effects exerted in vitro by three asymmetrical porphyrins (5-(2-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin, 5-(2-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrinatozinc(II), and 5-(2-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrinatocopper(II)) on the transmembrane potential and the membrane anisotropy of U937 cell lines, using bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH), respectively, as fluorescent probes for fluorescence spectrophotometry. The results indicate the hyperpolarizing effect of porphyrins in the concentration range of 0.5, 5, and 50 µM on the membrane of human U937 monocytic cells. Moreover, the tested porphyrins were shown to increase membrane anisotropy. Altogether, the results evidence the interaction of asymmetrical porphyrins with the membrane of U937 cells, with potential consequences on cellular homeostasis. Molecular docking simulations, and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) free energy of binding calculations, supported the hypothesis that the investigated porphyrinic compounds could potentially bind to membrane proteins, with a critical role in regulating the transmembrane potential. Thus, both the free base porphyrins and the metalloporphyrins could bind to the SERCA2b (sarco/endoplasmic reticulum ATPase isoform 2b) calcium pump, while the metal complexes may specifically interact and modulate calcium-dependent (large conductance calcium-activated potassium channel, Slo1/KCa1.1), and ATP-sensitive (KATP), potassium channels. Further studies are required to investigate these interactions and their impact on cellular homeostasis and functionality.


Asunto(s)
Porfirinas , Humanos , Porfirinas/química , Células U937 , Calcio/metabolismo , Simulación del Acoplamiento Molecular , Membrana Celular/metabolismo , Adenosina Trifosfato/metabolismo
2.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38256895

RESUMEN

In order to select for further development novel photosensitizers for photodynamic therapy in cutaneous disorders, three unsymmetrical porphyrins, namely 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2), 5-(2-hydroxy-5-methoxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl) porphyrin (P3.2), and 5-(2,4-dihydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P4.2), along with their fully symmetrical counterparts 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1) and 5,10,15,20-tetrakis-(4-carboxymethylphenyl) porphyrin (P3.1) were comparatively evaluated. The absorption and fluorescence properties, as well as atomic force microscopy measurements were performed to evaluate the photophysical characteristics as well as morphological and textural properties of the mentioned porphyrins. The cellular uptake of compounds and the effect of photodynamic therapy on the viability, proliferation, and necrosis of human HaCaT keratinocytes, human Hs27 skin fibroblasts, human skin SCL II squamous cell carcinoma, and B16F10 melanoma cells were assessed in vitro, in correlation with the structural and photophysical properties of the investigated porphyrins, and with the predictions regarding diffusion through cell membranes and ADMET properties. All samples were found to be isotropic and self-similar, with slightly different degrees of aggregability, had a relatively low predicted toxicity (class V), and a predicted long half-life after systemic administration. The in vitro study performed on non-malignant and malignant skin-relevant cells highlighted that the asymmetric P2.2 porphyrin qualified among the five investigated porphyrins to be a promising photosensitizer candidate for PDT in skin disorders. P2.2 was shown to accumulate well within cells, and induced by PDT a massive decrease in the number of metabolically active skin cells, partly due to cell death by necrosis. P2.2 had in this respect a better behavior than the symmetric P.2.1 compound and the related asymmetric compound P4.2. The strong action of P2.2-mediated PDT on normal skin cells might be an important drawback for further development of this compound. Meanwhile, the P3.1 and P3.2 compounds were not able to accumulate well in skin cells, and did not elicit significant PDT in vitro. Taken together, our experiments suggest that P2.2 can be a promising candidate for the development of novel photosensitizers for PDT in skin disorders.

3.
Free Radic Biol Med ; 190: 179-201, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35964840

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease with an important inflammatory component accompanied by deregulated redox-dependent signaling pathways that are feeding back into inflammation. In this context, we bring into focus the transcription factor NRF2, a master redox regulator that exerts exquisite antioxidant and anti-inflammatory effects. The review does not intend to be exhaustive, but to point out arguments sustaining the rationale for applying an NRF2-directed co-treatment in RA as well as its potential limitations. The involvement of NRF2 in RA is emphasized through an analysis of publicly available transcriptomic data on NRF2 target genes and the findings from NRF2-knockout mice. The impact of NRF2 on concurrent pathologic mechanisms in RA is explained by its crosstalk with major redox-sensitive inflammatory and cell death-related pathways, in the context of the increased survival of pathologic cells in RA. The proposed adjunctive therapy targeted to NRF2 is further sustained by the existence of promising NRF2 activators that are in various stages of drug development. The interference of NRF2 with conventional anti-rheumatic therapies is discussed, including the cytoprotective effects of NRF2 for alleviating drug toxicity. From another perspective, the review presents how NRF2 activation would be decreasing the efficacy of synthetic anti-rheumatic drugs by increasing drug efflux. Future perspectives regarding pharmacologic NRF2 activation in RA are finally proposed.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Animales , Antioxidantes/uso terapéutico , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal
4.
Pharmaceutics ; 13(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34371724

RESUMEN

Photodynamic therapy (PDT), a highly targeted therapy with acceptable side effects, has emerged as a promising therapeutic option in oncologic pathology. One of the issues that needs to be addressed is related to the complex network of cellular responses developed by tumor cells in response to PDT. In this context, this study aims to characterize in vitro the stressors and the corresponding cellular responses triggered by PDT in the human colon carcinoma HT29 cell line, using a new asymmetric porphyrin derivative (P2.2) as a photosensitizer. Besides investigating the ability of P2.2-PDT to reduce the number of viable tumor cells at various P2.2 concentrations and fluences of the activating light, we assessed, using qRT-PCR, the expression levels of 84 genes critically involved in the stress response of PDT-treated cells. Results showed a fluence-dependent decrease of viable tumor cells at 24 h post-PDT, with few cells that seem to escape from PDT. We highlighted following P2.2-PDT the concomitant activation of particular cellular responses to oxidative stress, hypoxia, DNA damage and unfolded protein responses and inflammation. A web of inter-connected stressors was induced by P2.2-PDT, which underlies cell death but also elicits protective mechanisms that may delay tumor cell death or even defend these cells against the deleterious effects of PDT.

5.
J Inflamm Res ; 14: 429-442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658823

RESUMEN

PURPOSE: Chronic low-grade inflammation and oxidative stress are present in most of the pathologic mechanisms underlying non-communicable diseases. Inflammation and redox biomarkers might therefore have a value in disease prognosis and therapy response. In this context, we performed a case-control study for assessing in whole blood the expression profile of inflammation and redox-related genes in elderly subjects with various comorbidities. PATIENTS AND METHODS: In the blood of 130 elderly subjects with various pathologies (cardiovascular disease, hypertension, dyslipidemia including hypercholesterolemia, type 2 diabetes mellitus), kept under control by polyvalent disease-specific medication, we investigated by pathway-focused qRT-PCR a panel comprising 84 inflammation-related and 84 redox-related genes. RESULTS: The study highlights a distinctive expression profile of genes critically involved in NF-κB-mediated inflammation and redox signaling in the blood of patients with cardiovascular disease, characterized by significant down-regulation of the genes NFKB2, NFKBIA, RELA, RELB, AKT1, IRF1, STAT1, CD40, LTA, TRAF2, PTGS1, ALOX12, DUOX1, DUOX2, MPO, GSR, TXNRD2, HSPA1A, MSRA, and PDLIM1. This gene expression profile defines the transcriptional status of blood leukocytes in stable disease under medication control, without discriminating between disease- and therapy-related changes. CONCLUSION: The study brings preliminary proof on a minimally invasive strategy for monitoring disease in patients with cardiovascular pathology, from the point of view of inflammation or redox dysregulation in whole blood.

6.
Rom J Morphol Embryol ; 62(3): 785-792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35263407

RESUMEN

This study aimed to assess the in vitro biocompatibility of titanium (Ti) alloy orthodontic mini-implants by correlating human osteoblasts (HOb) response with chemical composition and surface morphology of mini-implants. HOb were cultivated with or without custom-made and commercial mini-implants, discs and filings. The surface morphology and chemical composition of the implants were assessed under the scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis system. Cell viability, adhesion and proliferation were analyzed by optical microscopy and flow cytometry. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) reduction and lactate dehydrogenase (LDH) release tests were used to assess the cytotoxicity of discs and filings-treated culture medium. Shape, adhesion, and multiplication of HOb were not significantly altered by the presence of mini-implants, discs or filings in culture, even though Ti alloy may exert in vitro a low cytotoxic effect on HOb adhered to discs. Morphology analysis by SEM demonstrated that custom-made mini-implants' surface differs from that of commercial mini-screws in terms of surface finish and roughness, whilst EDX analysis showed largely similar percentages of Ti, aluminum and vanadium for the two types of implants. No major differences were noticed regarding the effect exerted in vitro on HOb by the investigated implants. The new mini-implants have a convenient in vitro cytotoxicity profile on HOb.


Asunto(s)
Implantes Dentales , Métodos de Anclaje en Ortodoncia , Humanos , Microscopía Electrónica de Rastreo , Osteoblastos , Propiedades de Superficie , Titanio/química , Titanio/farmacología
7.
Molecules ; 22(11)2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29068406

RESUMEN

Abstract: We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT): 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (P2.2), Zn(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Zn(II)2.2) and Cu(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Cu(II)2.2). The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR and NMR. The compounds had a good solubility in polar/nonpolar media. P2.2 and, to a lesser extent, Zn(II)2.2 were fluorescent, albeit with low fluoresence quantum yields. P2.2 and Zn(II)2.2 exhibited PDT-acceptable values of singlet oxygen generation. A "dark" cytotoxicity study was performed using cells that are relevant for the tumor niche (HT-29 colon carcinoma cells and L929 fibroblasts) and for blood (peripheral mononuclear cells). Cellular uptake of fluorescent compounds, cell viability/proliferation and death were evaluated. P2.2 was highlighted as a promising theranostic agent for PDT in solid tumors considering that P2.2 generated PDT-acceptable singlet oxygen yields, accumulated into tumor cells and less in blood cells, exhibited good fluorescence within cells for imagistic detection, and had no significant cytotoxicity in vitro against tumor and normal cells. Complexing of P2.2 with Zn(II) or Cu(II) altered several of its PDT-relevant properties. These are consistent arguments for further developing P2.2 in animal models of solid tumors for in vivo PDT.


Asunto(s)
Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/síntesis química , Porfirinas/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Células HT29 , Humanos , Ratones , Estructura Molecular , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Porfirinas/química , Oxígeno Singlete/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...