Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cancers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893147

RESUMEN

Endometrial cancer is one the most prevalent gynecological cancers and, unfortunately, has a poor prognosis due to low response rates to traditional treatments. However, the progress in molecular biology and understanding the genetic mechanisms involved in tumor processes offers valuable information that has led to the current classification that describes four molecular subtypes of endometrial cancer. This review focuses on the molecular mechanisms involved in the pathogenesis of endometrial cancers, such as genetic mutations, defects in the DNA mismatch repair pathway, epigenetic changes, or dysregulation in angiogenic or hormonal signaling pathways. The preclinical genomic and molecular investigations presented allowed for the identification of some molecules that could be used as biomarkers to diagnose, predict, and monitor the progression of endometrial cancer. Besides the therapies known in clinical practice, targeted therapy is described as a new cancer treatment that involves identifying specific molecular targets in tumor cells. By selectively inhibiting these targets, key signaling pathways involved in cancer progression can be disrupted while normal cells are protected. The connection between molecular biomarkers and targeted therapy is vital in the fight against cancer. Ongoing research and clinical trials are exploring the use of standard therapy agents in combination with other treatment strategies like immunotherapy and anti-angiogenesis therapy to improve outcomes and personalize treatment for patients with endometrial cancer. This approach has the potential to transform the management of cancer patients. In conclusion, enhancing molecular tools is essential for stratifying the risk and guiding surgery, adjuvant therapy, and cancer treatment for women with endometrial cancer. In addition, the information from this review may have an essential value in the personalized therapy approach for endometrial cancer to improve the patient's life.

2.
Int J Biol Macromol ; 274(Pt 2): 133192, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914397

RESUMEN

In this paper, a blend composed of alginate-pectin-chitosan loaded with sodium hyaluronate in the form of an in situ forming dressing was successfully developed for wound repair applications. This complex polymeric blend has been efficiently used to encapsulate hyaluronate, forming an adhesive, flexible, and non-occlusive hydrogel able to uptake to 15 times its weight in wound fluid, and being removed without trauma from the wound site. Calorimetric and FT-IR studies confirmed chemical interactions between hyaluronate and polysaccharides blend, primarily related to the formation of a polyelectrolytic complex between hyaluronate and chitosan. In vivo wound healing assays on murine models highlighted the ability of the loaded hydrogels to significantly accelerate wound healing compared to a hyaluronic-loaded ointment. This was evident through complete wound closure in <10 days, accompanied by fully restored epidermal functionality and no indications of the site of excision or treatment. Therefore, all these results suggest that hyaluronate-loaded powders could be a very promising conformable dressing in several wound healing applications where exudate is present.


Asunto(s)
Vendajes , Quitosano , Ácido Hialurónico , Hidrogeles , Polvos , Cicatrización de Heridas , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Quitosano/química , Alginatos/química , Espectroscopía Infrarroja por Transformada de Fourier , Pectinas/química , Pectinas/farmacología
3.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396984

RESUMEN

In the present study, we employed the ddPCR and IHC techniques to assess the prevalence and roles of RAS and RAF mutations in a small batch of melanoma (n = 22), benign moles (n = 15), and normal skin samples (n = 15). Mutational screening revealed the coexistence of BRAF and NRAS mutations in melanomas and nevi and the occurrence of NRAS G12/G13 variants in healthy skin. All investigated nevi had driver mutations in the BRAF or NRAS genes and elevated p16 protein expression, indicating cell cycle arrest despite an increased mutational burden. BRAF V600 mutations were identified in 54% of melanomas, and NRAS G12/G13 mutations in 50%. The BRAF mutations were associated with the Breslow index (BI) (p = 0.029) and TIL infiltration (p = 0.027), whereas the NRAS mutations correlated with the BI (p = 0.01) and the mitotic index (p = 0.04). Here, we demonstrate that the "young" ddPCR technology is as effective as a CE-IVD marked real-time PCR method for detecting BRAF V600 hotspot mutations in tumor biopsies and recommend it for extended use in clinical settings. Moreover, ddPCR was able to detect low-frequency hotspot mutations, such as NRAS G12/G13, in our tissue specimens, which makes it a promising tool for investigating the mutational landscape of sun-damaged skin, benign nevi, and melanomas in more extensive clinical studies.


Asunto(s)
Melanoma Cutáneo Maligno , Nevo de Células Epitelioides y Fusiformes , Neoplasias Cutáneas , Humanos , Análisis Mutacional de ADN , Mutación , Nevo de Células Epitelioides y Fusiformes/genética , Proyectos Piloto , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Melanoma Cutáneo Maligno/genética
4.
Gels ; 10(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38391433

RESUMEN

Three-dimensional (3D) bioprinting is the use of computer-controlled transfer processes for assembling bioinks (cell clusters or materials loaded with cells) into structures of prescribed 3D organization. The correct bioprinting parameters ensure a fast and accurate bioink deposition without exposing the cells to harsh conditions. This study seeks to optimize pneumatic extrusion-based bioprinting based on hydrogel flow rate and extrusion speed measurements. We measured the rate of the hydrogel flow through a cylindrical nozzle and used non-Newtonian hydrodynamics to fit the results. From the videos of free-hanging hydrogel strands delivered from a stationary print head, we inferred the extrusion speed, defined as the speed of advancement of newly formed strands. Then, we relied on volume conservation to evaluate the extrudate swell ratio. The theoretical analysis enabled us to compute the extrusion speed for pressures not tested experimentally as well as the printing speed needed to deposit hydrogel filaments of a given diameter. Finally, the proposed methodology was tested experimentally by analyzing the morphology of triple-layered square-grid hydrogel constructs printed at various applied pressures while the printing speeds matched the corresponding extrusion speeds. Taken together, the results of this study suggest that preliminary measurements and theoretical analyses can simplify the search for the optimal bioprinting parameters.

5.
J Diabetes ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38158644

RESUMEN

The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has multifarious action with its target genes having redox-regulating functions and being involved in inflammation control, proteostasis, autophagy, and metabolic pathways. Therefore, the genes controlled by NRF2 are involved in the pathogenesis of myriad diseases, such as cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, autoimmune disorders, and cancer. Amidst this large array of diseases, diabetic neuropathy (DN) occurs in half of patients diagnosed with diabetes and appears as an injury inflicted upon peripheral and autonomic nervous systems. As a complex effector factor, NRF2 has entered the spotlight during the search of new biomarkers and/or new therapy targets in DN. Due to the growing attention for NRF2 as a modulating factor in several diseases, including DN, this paper aims to update the recently discovered regulatory pathways of NRF2 in oxidative stress, inflammation and immunity. It presents the animal models that further facilitated the human studies in regard to NRF2 modulation and the possibilities of using NRF2 as DN biomarker and/or as target therapy.

6.
Gels ; 10(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38247754

RESUMEN

Contamination of the aqueous environment caused by the presence of heavy metal ions and oils is a growing concern that must be addressed to reduce their detrimental impact on living organisms and safeguard the environment. Recent efficient and environmentally friendly remediation methods for the treatment of water are based on third-generation bioaerogels as emerging applications for the removal of heavy metal ions and oils from aqueous systems. The peculiarities of these materials are various, considering their high specific surface area and low density, together with a highly porous three-dimensional structure and tunable surface chemistry. This review illustrates the recent progress in aerogels developed from cellulose and chitosan as emerging materials in water treatment. The potential of aerogel-based adsorbents for wastewater treatment is reported in terms of adsorption efficacy and reusability. Despite various gaps affecting the manufacturing and production costs of aerogels that actually limit their successful implementation in the market, the research progress suggests that bio-based aerogels are ready to be used in water-treatment applications in the near future.

7.
Biol. Res ; 47: 1-9, 2014. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-950729

RESUMEN

BACKGROUND: Photodynamic therapy is an alternative treatment of muco-cutaneous tumors that uses a light source able to photoactivate a chemical compound that acts as a photosensitizer. The phthalocyanines append to a wide chemical class that encompasses a large range of compounds; out of them aluminium-substituted disulphonated phthalocyanine possesses a good photosensitizing potential. RESULTS: The destructive effects of PDT with aluminium-substituted disulphonated phthalocyanine are achieved by induction of apoptosis in tumoral cells as assessed by flow cytometry analysis. Using protein microarray we evaluate the possible molecular pathways by which photodynamic therapy activates apoptosis in dysplastic oral keratinocytes cells, leading to the tumoral cells destruction. Among assessed analytes, Bcl-2, P70S6K kinase, Raf-1 and Bad proteins represent the apoptosis related biomolecules that showed expression variations with the greatest amplitude. CONCLUSIONS: Up to date, the intimate molecular apoptotic mechanisms activated by photodynamic therapy with this type of phthalocyanine in dysplastic human oral keratinocytes are not completely elucidated. With protein microarray as high-throughput proteomic approach a better understanding of the manner in which photodynamic therapy leads to tumoral cell destruction can be obtained, by depicting apoptotic molecules that can be potentially triggered in future anti-tumoral therapies.


Asunto(s)
Humanos , Fotoquimioterapia , Lesiones Precancerosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Queratinocitos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Análisis por Matrices de Proteínas , Compuestos Organometálicos/uso terapéutico , Lesiones Precancerosas/patología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Neoplasias de la Boca/patología , Queratinocitos/patología , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Proteínas Proto-Oncogénicas c-raf/análisis , Proteínas Quinasas S6 Ribosómicas 70-kDa/análisis , Línea Celular Tumoral , Proteína Letal Asociada a bcl/análisis , Citometría de Flujo , Indoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA