Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 575: 496-512, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769641

RESUMEN

River water-quality studies rarely measure dissolved inorganic carbon (DIC) routinely, and there is a gap in our knowledge of the contributions of DIC to aquatic carbon fluxes and cycling processes. Here, we present the THINCARB model (THermodynamic modelling of INorganic CARBon), which uses widely-measured determinands (pH, alkalinity and temperature) to calculate DIC concentrations, speciation (bicarbonate, HCO3-; carbonate, CO32-; and dissolved carbon dioxide, H2CO3⁎) and excess partial pressures of carbon dioxide (EpCO2) in freshwaters. If calcium concentration measurements are available, THINCARB also calculates calcite saturation. THINCARB was applied to the 39-year Harmonised Monitoring Scheme (HMS) dataset, encompassing all the major British rivers discharging to the coastal zone. Model outputs were combined with the HMS dissolved organic carbon (DOC) datasets, and with spatial land use, geology, digital elevation and hydrological datasets. We provide a first national-scale evaluation of: the spatial and temporal variability in DIC concentrations and fluxes in British rivers; the contributions of DIC and DOC to total dissolved carbon (TDC); and the contributions to DIC from HCO3- and CO32- from weathering sources and H2CO3⁎ from microbial respiration. DIC accounted for >50% of TDC concentrations in 87% of the HMS samples. In the seven largest British rivers, DIC accounted for an average of 80% of the TDC flux (ranging from 57% in the upland River Tay, to 91% in the lowland River Thames). DIC fluxes exceeded DOC fluxes, even under high-flow conditions, including in the Rivers Tay and Tweed, draining upland peaty catchments. Given that particulate organic carbon fluxes from UK rivers are consistently lower than DOC fluxes, DIC fluxes are therefore also the major source of total carbon fluxes to the coastal zone. These results demonstrate the importance of accounting for DIC concentrations and fluxes for quantifying carbon transfers from land, via rivers, to the coastal zone.

2.
Environ Sci Technol ; 48(9): 4860-8, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24720609

RESUMEN

Karst landscapes are often perceived as highly vulnerable to agricultural phosphorus (P) loss, via solution-enlarged conduits that bypass P retention processes. Although attenuation of P concentrations has been widely reported within karst drainage, the extent to which this results from hydrological dilution, rather than P retention, is poorly understood. This is of strategic importance for understanding the resilience of karst landscapes to P inputs, given increasing pressures for intensified agricultural production. Here hydrochemical tracers were used to account for dilution of P, and to quantify net P retention, along transport pathways between agricultural fields and emergent springs, for the karst of the Ozark Plateau, midcontinent USA. Up to ∼ 70% of the annual total P flux and ∼ 90% of the annual soluble reactive P flux was retained, with preferential retention of the most bioavailable (soluble reactive) P fractions. Our results suggest that, in some cases, karst drainage may provide a greater P sink than previously considered. However, the subsequent remobilization and release of the retained P may become a long-term source of slowly released "legacy" P to surface waters.


Asunto(s)
Fósforo/química , Contaminantes Químicos del Agua/química , Agricultura , Agua Dulce/química , Agua Subterránea/química , Hidrología , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
3.
Proc Natl Acad Sci U S A ; 110(30): 12213-8, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23842090

RESUMEN

The chemical dynamics of lakes and streams affect their suitability as aquatic habitats and as water supplies for human needs. Because water quality is typically monitored only weekly or monthly, however, the higher-frequency dynamics of stream chemistry have remained largely invisible. To illuminate a wider spectrum of water quality dynamics, rainfall and streamflow were sampled in two headwater catchments at Plynlimon, Wales, at 7-h intervals for 1-2 y and weekly for over two decades, and were analyzed for 45 solutes spanning the periodic table from H(+) to U. Here we show that in streamflow, all 45 of these solutes, including nutrients, trace elements, and toxic metals, exhibit fractal 1/f(α) scaling on time scales from hours to decades (α = 1.05 ± 0.15, mean ± SD). We show that this fractal scaling can arise through dispersion of random chemical inputs distributed across a catchment. These 1/f time series are non-self-averaging: monthly, yearly, or decadal averages are approximately as variable, one from the next, as individual measurements taken hours or days apart, defying naive statistical expectations. (By contrast, stream discharge itself is nonfractal, and self-averaging on time scales of months and longer.) In the solute time series, statistically significant trends arise much more frequently, on all time scales, than one would expect from conventional t statistics. However, these same trends are poor predictors of future trends-much poorer than one would expect from their calculated uncertainties. Our results illustrate how 1/f time series pose fundamental challenges to trend analysis and change detection in environmental systems.

4.
J Environ Qual ; 42(2): 295-304, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673821

RESUMEN

This commentary examines an "inconvenient truth" that phosphorus (P)-based nutrient mitigation, long regarded as the key tool in eutrophication management, in many cases has not yet yielded the desired reductions in water quality and nuisance algal growth in rivers and their associated downstream ecosystems. We examine why the water quality and aquatic ecology have not recovered, in some case after two decades or more of reduced P inputs, including (i) legacies of past land-use management, (ii) decoupling of algal growth responses to river P loading in eutrophically impaired rivers; and (iii) recovery trajectories, which may be nonlinear and characterized by thresholds and alternative stable states. It is possible that baselines have shifted and that some disturbed river environments may never return to predisturbance conditions or may require P reductions below those that originally triggered ecological degradation. We discuss the practical implications of setting P-based nutrient criteria to protect and improve river water quality and ecology, drawing on a case study from the Red River Basin in the United States. We conclude that the challenges facing nutrient management and eutrophication control bear the hallmarks of "postnormal" science, where uncertainties are large, management intervention is urgently required, and decision stakes are high. We argue a case for a more holistic approach to eutrophication management that includes more sophisticated regime-based nutrient criteria and considers other nutrient and pollutant controls and river restoration (e.g., physical habitat and functional food web interactions) to promote more resilient water quality and ecosystem functioning along the land-freshwater continuum.


Asunto(s)
Fósforo , Ríos , Ecosistema , Eutrofización , Agua Dulce , Nitrógeno , Agua
5.
Sci Total Environ ; 434: 3-12, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22245159

RESUMEN

Eighteen months of 7-hourly analyses of rainfall and stream water chemistry are presented, spanning a wide range of chemical determinands and building on over 20 years of weekly records for the moorland headwaters of the river Severn. The high-frequency time series data show that hydrochemical responses to major hydrological and biological drivers of short-term variability in rainfall and rivers are not captured by conventional low-frequency monitoring programmes. A wealth of flow related, flow independent, diurnal, seasonal and annual fluctuations indicate a cacophony of interactions within the catchment and stream. The complexity of the chemical dynamics is visually obvious, although there appears to be no clear way of translating this complexity into a simple algorithm. The work provides a proof of concept for the complex structure of catchment functioning revealed by extensive high-frequency measurements coupled with high analytical sensitivity and reproducibility. It provides new insights into hydrogeochemical functioning and a novel resource for catchment modelling.


Asunto(s)
Lluvia , Movimientos del Agua , Calidad del Agua , Monitoreo del Ambiente , Control de Calidad
6.
J Environ Monit ; 14(1): 34-40, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22009450

RESUMEN

Al is a critical ecotoxicant in surface waters impacted by acidic deposition. Apart from the most acidic surface waters, Al concentrations are often considered to be controlled by Al(OH)(3) or aluminosilicate (clay) solubility for modelling studies. For many UK rivers there is no clear evidence for such solubility controls even though there is the potential under moderately acidic/alkaline conditions. Here, Al solubility in ground and river water is compared for acid sensitive catchments in mid-Wales. The results reveal that there may be a solubility control within the groundwater but a more complex state of affairs within the river. The groundwater is of high CO(2) content and once in the river it degasses to raise pH. However, there is limited change in Al concentration and hence the solubility relationship is lost. The results flag the potential importance of groundwater solubility controls for Al and the potential for the groundwater zone to act as an Al filter. For positive alkalinity groundwaters, the high CO(2) levels depress the pH to near the value for minimum Al solubility. However, there is no simple groundwater end-member. Examining Al solubility controls solely within the rivers provides cryptic and misleading clues to the hydrogeological controls for Al within catchments. Assessing the within-catchment processes requires direct measurement with full consideration of both inorganic and organic attenuation.


Asunto(s)
Aluminio/análisis , Dióxido de Carbono/química , Agua Subterránea/química , Ríos/química , Contaminantes Químicos del Agua/análisis , Aluminio/química , Concentración de Iones de Hidrógeno , Solubilidad , Gales , Contaminantes Químicos del Agua/química
7.
Sci Total Environ ; 434: 186-200, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22119034

RESUMEN

This paper examines two hydrochemical time-series derived from stream samples taken in the Upper Hafren catchment, Plynlimon, Wales. One time-series comprises data collected at 7-hour intervals over 22 months (Neal et al., 2012-this issue), while the other is based on weekly sampling over 20 years. A subset of determinands: aluminium, calcium, chloride, conductivity, dissolved organic carbon, iron, nitrate, pH, silicon and sulphate are examined within a framework of non-stationary time-series analysis to identify determinand trends, seasonality and short-term dynamics. The results demonstrate that both long-term and high-frequency monitoring provide valuable and unique insights into the hydrochemistry of a catchment. The long-term data allowed analysis of long-term trends, demonstrating continued increases in DOC concentrations accompanied by declining SO(4) concentrations within the stream, and provided new insights into the changing amplitude and phase of the seasonality of the determinands such as DOC and Al. Additionally, these data proved invaluable for placing the short-term variability demonstrated within the high-frequency data within context. The 7-hour data highlighted complex diurnal cycles for NO(3), Ca and Fe with cycles displaying changes in phase and amplitude on a seasonal basis. The high-frequency data also demonstrated the need to consider the impact that the time of sample collection can have on the summary statistics of the data and also that sampling during the hours of darkness provides additional hydrochemical information for determinands which exhibit pronounced diurnal variability. Moving forward, this research demonstrates the need for both long-term and high-frequency monitoring to facilitate a full and accurate understanding of catchment hydrochemical dynamics.


Asunto(s)
Estaciones del Año , Calidad del Agua , Gales
8.
J Environ Monit ; 13(8): 2153-64, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21701704

RESUMEN

Dissolved aluminium concentrations ([Al]) in the <0.45 µm filtered fraction are described for 54 UK river sites covering rural, acidic/acid sensitive, agricultural and urban typologies, and wide pH range (4 to 11). High [Al] occurred under acidic conditions and for acid runoff neutralised by bicarbonate rich groundwater. Thermodynamic analysis indicates Al hydroxide/hydroxy-silicate oversaturation at circumneutral pH across the rivers, but undersaturation at lower/higher pH. The oversaturation reflects in part the presence of Al bearing colloids as indicated by (1) [Al] being correlated with components associated with both lithogenic (Fe, Ti and lanthanides) colloids and organic carbon, (2) baseflow studies using cross-flow ultrafiltration and (3) comparison of our data with Acid Waters Monitoring Network (AWMN) information on labile and non-labile Al. Tree harvesting and emission reductions of SO(x) in acidic and acid sensitive catchments in mid-Wales led to acidification reversal, lower [Al] and changing [H(+)] - [Al] relationships. The [Al] decline was confined to acidic conditions while [Al] increased during the later part of the monitoring period with a peak around 2002 for moorland and forested systems. Colloidal production across the flow range was indicated late in the record by comparison of our data with information collected by the AWMN for a site in mid-Wales. This production seems interlinked with organic carbon and with dissolved CO(2) changes. In order for further understanding of Al hydrogeochemistry in river systems there is a need to integrate research that moves from equilibrium to kinetic and colloidal consideration including the critical issues of organic and inorganic controls within the context of bioavailability and aquatic stress. The colloidal Al may well be of low environmental concern to fish and other factors such as habitat may well be critical.


Asunto(s)
Aluminio/análisis , Monitoreo del Ambiente , Ríos/química , Contaminación Química del Agua/análisis , Carbono/análisis , Coloides/química , Ecosistema , Monitoreo del Ambiente/métodos , Cinética , Reino Unido
9.
J Environ Qual ; 40(2): 492-504, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21520757

RESUMEN

Extended end-member mixing analysis (E-EMMA) is presented as a novel empirical method for exploring phosphorus (P) retention and release in rivers and watersheds, as an aid to water-quality management. E-EMMA offers a simple and versatile tool that relies solely on routinely measured P concentration and flow data. E-EMMA was applied to two river systems: the Thames (U.K.) and Sandusky River (U.S.), which drain similar watershed areas but have contrasting dominant P sources and hydrology. For both the Thames and Sandusky, P fluxes at the watershed outlets were strongly influenced by processes that retain and cycle P. However, patterns of P retention were markedly different for the two rivers, linked to differences in P sources and speciation, hydrology and land use. On an annual timescale, up to 48% of the P flux was retained for the Sandusky and up to 14% for the Thames. Under ecologically critical low-flow periods, up to 93% of the P flux was retained for the Sandusky and up to 42% for the Thames. In the main River Thames and the Sandusky River, in-stream processes under low flows were capable of regulating the delivery of P and modifying the timing of delivery in a way that may help to reduce ecological impacts to downstream river reaches, by reducing ambient P concentrations at times of greatest river eutrophication risk. The results also suggest that by moving toward cleaner rivers and improved ecosystem health, the efficiency of P retention may actually increase.


Asunto(s)
Monitoreo del Ambiente/métodos , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/análisis , Ohio , Movimientos del Agua
10.
Sci Total Environ ; 409(10): 1843-53, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21353288

RESUMEN

Operationally defined dissolved Titanium [Ti] (the <0.45µm filtered fraction) in rivers draining rural, agricultural, urban and industrial land-use types in the UK averaged 2.1µg/l with a range in average of 0.55 to 6.48µg/l. The lowest averages occurred for the upland areas of mid-Wales the highest just downstream of major sewage treatment works (STWs). [Ti] in rainfall and cloud water in mid-Wales averaged 0.2 and 0.7µg/l, respectively. Average, baseflow and stormflow [Ti] were compared with two markers of sewage effluent and thus human population: soluble reactive phosphorus (SRP) and boron (B). While B reflects chemically conservative mixing, SRP declined downstream of STW inputs due to in-stream physico-chemical and biological uptake. The results are related to colloidal and sub-colloidal Ti inputs from urban/industrial conurbations coupled with diffuse background (geological) sources and within-river removal/retention under low flows as a result of processes of aggregation and sedimentation. The urban/industrial inputs increased background [Ti] by up to eleven fold, but the total anthropogenic Ti input might well have been underestimated owing to within-river retention. A baseline survey using cross-flow ultrafiltration revealed that up to 79% of the [Ti] was colloidal/nanoparticulate (>1kDa i.e. >c. 1-2nm) for the rural areas, but as low as 28% for the urban/industrial rivers. This raises fundamental issues of the pollutant inputs of Ti, with the possibility of significant complexation of Ti in the sewage effluents and subsequent breakdown within the rivers, as well as the physical dispersion of fine colloids down to the macro-molecular scale. Although not directly measured, the particulate Ti can make an important contribution to the net Ti flux.


Asunto(s)
Ríos/química , Titanio/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Agricultura , Ciudades , Monitoreo del Ambiente , Residuos Industriales/análisis , Población Rural , Ultrafiltración , Reino Unido
11.
Sci Total Environ ; 409(8): 1516-29, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21296383

RESUMEN

Information on a new observatory study of the water quality of two major river basins in northwestern England (the Ribble and Wyre) is presented. It covers upland, intermediate and lowland environments of contrasting pollution history with sufficient detail to examine transitional gradients. The upland rivers drain acidic soils subjected to long-term acidic deposition. Nonetheless, the acidic runoff from the soils is largely neutralised by high alkalinity groundwaters, although the rivers retain, perhaps as colloids, elements such as Al and Fe that are mobilised under acid conditions. The lowland rivers are contaminated and have variable water quality due to variable urban/industrial point and diffuse inputs reflecting local and regional differences in historic and contemporary sources. For most determinands, pollutant concentrations are not a major cause for concern although phosphate levels remain high. Set against earlier studies for other regions, there may be a general decline in pollutant levels and this is most clearly observed for boron where effluent inputs have declined significantly due to reductions in household products that are flushed down the drain. High concentrations of sodium and chloride occurred briefly after a severe cold spell due to flushing of road salts. A major inventory for water quality within rural, urban, industrial and agricultural typologies is provided within data summary attachments for over 50 water quality determinands. Within the next year, the full dataset will be made available from the CEH website. This, with ongoing monitoring, represents a platform for water quality studies across a wide range of catchment typologies pertinent to environmental management of clean and impacted systems within the UK. The study provides a base of research "from source to sea" including extensions to the estuary and open sea for a semi-confined basin, the Irish Sea, where there are many issues of pollution inputs and contamination.


Asunto(s)
Ríos/química , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Inglaterra , Monitoreo del Ambiente , Sistemas de Información Geográfica , Industrias , Movimientos del Agua , Contaminación Química del Agua/estadística & datos numéricos , Abastecimiento de Agua/análisis
12.
Sci Total Environ ; 408(22): 5306-16, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20817260

RESUMEN

Information is provided on phosphorus in the River Kennet and the adjacent Kennet and Avon Canal in southern England to assess their interactions and the changes following phosphorus reductions in sewage treatment work (STW) effluent inputs. A step reduction in soluble reactive phosphorus (SRP) concentration within the effluent (5 to 13 fold) was observed from several STWs discharging to the river in the mid-2000s. This translated to over halving of SRP concentrations within the lower Kennet. Lower Kennet SRP concentrations change from being highest under base-flow to highest under storm-flow conditions. This represented a major shift from direct effluent inputs to a within-catchment source dominated system characteristic of the upper part to the catchment. Average SRP concentrations in the lower Kennet reduced over time towards the target for good water quality. Critically, there was no corresponding reduction in chlorophyll-a concentration, the waters remaining eutrophic when set against standards for lakes. Following the up gradient input of the main water and SRP source (Wilton Water), SRP concentrations in the canal reduced down gradient to below detection limits at times near its junction with the Kennet downstream. However, chlorophyll concentrations in the canal were in an order of magnitude higher than in the river. This probably resulted from long water residence times and higher temperatures promoting progressive algal and suspended sediment generations that consumed SRP. The canal acted as a point source for sediment, algae and total phosphorus to the river especially during the summer months when boat traffic disturbed the canal's bottom sediments and the locks were being regularly opened. The short-term dynamics of this transfer was complex. For the canal and the supply source at Wilton Water, conditions remained hypertrophic when set against standards for lakes even when SRP concentrations were extremely low.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Fósforo/análisis , Fitoplancton/crecimiento & desarrollo , Eliminación de Residuos Líquidos , Contaminantes del Agua/análisis , Carbonato de Calcio/química , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Eutrofización , Ríos/química , Aguas del Alcantarillado/química , Navíos/estadística & datos numéricos , Reino Unido , Movimientos del Agua
13.
Sci Total Environ ; 408(21): 5035-51, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20708776

RESUMEN

This paper presents new information on the hydrology and water quality of the eroding peatland headwaters of the River Severn in mid-Wales and links it to the impact of plantation conifer forestry further down the catchment. The Upper Hafren is dominated by low-growing peatland vegetation, with an average annual precipitation of around 2650 mm with around 250 mm evaporation. With low catchment permeability, stream response to rainfall is "flashy" with the rising limb to peak stormflow typically under an hour. The water quality is characteristically "dilute"; stormflow is acidic and enriched in aluminium and iron from the acid organic soil inputs. Baseflow is circum-neutral and calcium and bicarbonate bearing due to the inputs of groundwater enriched from weathering of the underlying rocks. Annual cycling is observed for the nutrients reflecting uptake and decomposition processes linked to the vegetation and for arsenic implying seasonal water-logging within the peat soils and underlying glacial drift. Over the decadal scale, sulphate and nitrate concentrations have declined while Gran alkalinity, dissolved organic carbon and iron have increased, indicating a reduction in stream acidification. Within the forested areas the water quality is slightly more concentrated and acidic, transgressing the boundary for acid neutralisation capacity as a threshold for biological damage. Annual sulphate and aluminium concentrations are double those observed in the Upper Hafren, reflecting the influence of forestry and the greater ability of trees to scavenge pollutant inputs from gaseous and mist/cloud-water sources compared to short vegetation. Acidification is decreasing more rapidly in the forest compared to the eroding peatland possibly due to the progressive harvesting of the mature forest reducing the scavenging of acidifying inputs. For the Lower Hafren, long-term average annual precipitation is slightly lower, with lower average altitude, at around 2520mm and evaporation is around double that of the Upper Hafren.


Asunto(s)
Ácidos/análisis , Monitoreo del Ambiente , Ríos/química , Contaminantes Químicos del Agua/análisis , Aluminio/análisis , Concentración de Iones de Hidrógeno , Árboles , Contaminación del Agua/prevención & control , Contaminación del Agua/estadística & datos numéricos
14.
Sci Total Environ ; 408(19): 4239-50, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20547413

RESUMEN

Phosphorus (P) concentration and flow data gathered during the 1990s for a range of British rivers were used to determine the relative contributions of point and diffuse inputs to the total P load, using the Load Apportionment Model (LAM). Heavily urbanised catchments were dominated by sewage inputs, but the majority of the study catchments received most of their annual phosphorus load from diffuse sources. Despite this, almost 80% of the study sites were dominated by point source inputs for the majority of the year, particularly during summer periods when eutrophication risk is greatest. This highlights the need to reduce sewage P inputs to improve the ecological status of British rivers. These modelled source apportionment estimates were validated against land-use data and boron load (a chemical marker for sewage). The LAM was applied to river flow data in subsequent years, to give predicted P concentrations (assuming no change in P source inputs), and these estimates were compared with observed concentration data. This showed that there had been significant reductions in P concentration in the River Thames, Aire and Ouse in the period 1999 to 2002, which were attributable to the introduction of P stripping at sewage treatment works (STW). The model was then used to forecast P concentrations resulting from the introduction of P removal at STW to a 2 or 1mgl(-1) consent limit. For the urbanised rivers in this study, the introduction of phosphorus stripping to a 1mgl(-1) consent level at all STW in the catchment would not reduce P concentrations in the rivers to potentially limiting concentrations. Therefore, further sewage P stripping will be required to comply with the Water Framework Directive. Diffuse P inputs may also need to be reduced before some of the highly nutrient-enriched rivers achieve good ecological status.


Asunto(s)
Fósforo/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Predicción , Modelos Químicos , Fósforo/normas , Reino Unido , Movimientos del Agua , Contaminantes Químicos del Agua/normas , Contaminación Química del Agua/legislación & jurisprudencia
15.
Sci Total Environ ; 408(7): 1485-500, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20097406

RESUMEN

The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.


Asunto(s)
Agua Dulce/química , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Inglaterra , Monitoreo del Ambiente , Ríos
16.
Sci Total Environ ; 408(6): 1315-30, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19919876

RESUMEN

Phosphorus concentrations in the upper River Thames Basin (southeastern England) are described and linked to sewage effluent sources. Weekly surveys between 1997 and 2007 of the Thames and two of its major tributaries, the Thame and the Kennet indicated that phosphorus was mainly in soluble reactive (SRP) form. Baseflow concentrations in the Thames reduced from 1584microg/l in 1998 to 376microg/l in 2006 and from 2655 to 715microg/l for the Thame. Flow response, flux and endmember mixing analysis indicated that these declines resulted from SRP reductions in sewage treatment works (STW) effluent following phosphorus stripping for the major STWs in the region. This was confirmed by comparing our analysis with direct measurements of SRP in the effluents based on Environment Agency data. A within-river loss under baseflow of approximately 64% (range 56-78%) of the SRP-effluent input was estimated for the Thames, with a near balance for the Thame. SRP concentrations in the Kennet were an order of magnitude lower than the Thames/Thame: non-point sources dominated and were important for all the rivers at high flows. It was concluded that removal of SRP from effluents would be insufficient SRP in the Thames and Thame to meet annual average environmental targets of 50 to 120microg/l. The paper flags the value of combining hydrological/chemical tracing and concentration/flux approaches to data interrogation and the bonus of having actual measurements of the effluent. It highlights the need for fuller assessment of water storage/sediment/biota interactions for phosphorus and for caution in using boron as a long-term tracer for effluent inputs, its concentrations having declined markedly in response to reduced usage in washing powders: the value of using sodium as a tracer for examining SRP changes is shown.


Asunto(s)
Fósforo/análisis , Ríos/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Tiempo , Reino Unido
17.
Sci Total Environ ; 408(6): 1374-85, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19932654

RESUMEN

The changing patterns of riverine boron concentration are examined for the Thames catchment in southern/southeastern England using data from 1997 to 2007. Boron concentrations are related to an independent marker for sewage effluent, sodium. The results show that boron concentrations in the main river channels have declined with time especially under baseflow conditions when sewage effluent dilution potential is at its lowest. While boron concentrations have reduced, especially under low-flow conditions, this does not fully translate to a corresponding reduction in boron flux and it seems that the "within-catchment" supplies of boron to the river are contaminated by urban sources. The estimated boron reduction in the effluent input to the river based on the changes in river chemistry is typically around 60% and this figure matches with an initial survey of more limited data for the industrial north of England. Data for effluent concentrations at eight sewage treatment works within the Kennet also indicate substantial reductions in boron concentrations: 80% reduction occurred between 2001 and 2008. For the more contaminated rivers there are issues of localised rather than catchment-wide sources and uncertainties over the extent and nature of water/boron stores. Atmospheric sources average around 32 to 61% for the cleaner and 4 to 14% for the more polluted parts. The substantial decreases in the boron concentrations correspond extremely well with the timing and extent of European wide trends for reductions in the industrial and domestic usage of boron-bearing compounds. It clearly indicates that such reductions have translated into lower average and peak concentrations of boron in the river although the full extent of these reductions has probably not yet occurred due to localised stores that are still to deplete.


Asunto(s)
Boro/análisis , Detergentes/química , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Estaciones del Año , Aguas del Alcantarillado/química , Sodio/análisis , Reino Unido , Contaminación Química del Agua/estadística & datos numéricos , Abastecimiento de Agua/análisis
18.
Sci Total Environ ; 407(17): 4787-98, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19505713

RESUMEN

The possible effects of changing climate on a southern and a north-eastern English river (the Thames and the Yorkshire Ouse, respectively) were examined in relation to water and ecological quality throughout the food web. The CLASSIC hydrological model, driven by output from the Hadley Centre climate model (HadCM3), based on IPCC low and high CO(2) emission scenarios for 2080 were used as the basis for the analysis. Compared to current conditions, the CLASSIC model predicted lower flows for both rivers, in all seasons except winter. Such an outcome would lead to longer residence times (by up to a month in the Thames), with nutrient, organic and biological contaminant concentrations elevated by 70-100% pro-rata, assuming sewage treatment effectiveness remains unchanged. Greater opportunities for phytoplankton growth will arise, and this may be significant in the Thames. Warmer winters and milder springs will favour riverine birds and increase the recruitment of many coarse fish species. However, warm, slow-flowing, shallower water would increase the incidence of fish diseases. These changing conditions would make southern UK rivers in general a less favourable habitat for some species of fish, such as the Atlantic salmon (Salmo salar). Accidental or deliberate, introductions of alien macrophytes and fish may change the range of species in the rivers. In some areas, it is possible that a concurrence of different pressures may give rise to the temporary loss of ecosystem services, such as providing acceptable quality water for humans and industry. An increasing demand for water in southern England due to an expanding population, a possibly reduced flow due to climate change, together with the Water Framework Directive obligation to maintain water quality, will put extreme pressure on river ecosystems, such as the Thames.


Asunto(s)
Clima , Ecosistema , Inglaterra , Humanos
19.
Sci Total Environ ; 407(8): 2966-79, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19217145

RESUMEN

The water quality of 13 rivers in the lowland, agricultural county of Suffolk is investigated using routine monitoring data for the period 1981 to 2006 collected by the Environment Agency of England and Wales (EA), and its predecessors, with particular emphasis on phosphorus (as total reactive phosphorus, TRP) and total (dissolved and particulate) oxidised nitrogen (TOxN--predominantly nitrate NO3). Major ion and flow data are used to outline fundamental hydrochemical characteristics related to the groundwater provenance of base-flow waters. Relative load contributions from point and diffuse sources are approximated using Load Apportionment Modelling for both TRP and TOxN where concurrent flow and concentration data are available. Analyses indicate a mixture of point and diffuse sources of TRP, with the former being dominant during low flow periods, while for TOxN diffuse sources dominate. Out of 59 sites considered, 53 (90%) were found to have annual average TRP concentrations greater than 0.05 mg P l(-1), and 36 (61%) had average concentrations over 0.120 mg P l(-1), the upper thresholds for 'High' and 'Good' ecological status, respectively. Correspondingly, for TOxN, most of the rivers are already within 70% of the 11.3 mg N l(-1) threshold, with two rivers (Wang and Ore) being consistently greater than this. It is suggested that the major challenge is to characterise and control point-source TRP inputs which, being predominant during the late spring and summer low-flow period, coincide with the peak of primary biological production, thus presenting the major challenge to achieving 'good' ecological status under the Water Framework Directive. Results show that considerable effort is still required to ensure appropriate management and develop tools for decision-support.


Asunto(s)
Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/legislación & jurisprudencia , Agricultura , Inglaterra , Monitoreo del Ambiente , Unión Europea , Sistemas de Información Geográfica , Geografía , Fósforo/química , Movimientos del Agua , Contaminantes Químicos del Agua/química
20.
Sci Total Environ ; 407(6): 1954-66, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19095288

RESUMEN

Changes in the relationship between soluble reactive phosphorus (SRP) concentration and river flow between 1966 and 2006 were assessed for the River Frome, UK using the recently developed Load Apportionment Model. The resulting source load estimates gave good agreement with known changes within the catchment. The model indicated an increase in point source contribution to the total river load from 46% to 62% between 1970 and 1985. This corresponded with the population increase within the catchment during that time. The predicted mean SRP load was highest between 1996 and 2000 (30 t y(-1)), with 49% coming from point sources. Despite no lowering in population or major changes in agricultural practice, the model predicted a reduced load of 18.1 t y(-1) for the period 2001 to 2005, due mainly to a decrease in point source inputs from 14.6 t y(-1) to 6.1 t y(-1) (equivalent to 34% of the total load). This prediction matches the major improvements in sewage treatment that occurred within the catchment in 2002. This study thus provides a major validation of the Load Apportionment Model. The model provides an effective and rapid method of determining past changes in phosphorus sources, based entirely on the P concentration - flow relationship: critically, it does not require any historical information on land use, fertiliser application rates, topography, soil types and sewage inputs. Further decreases in SRP concentration in the River Frome during the algal growing season would be best achieved by further reductions of STW inputs.


Asunto(s)
Modelos Químicos , Fósforo/química , Ríos/química , Contaminantes Químicos del Agua/química , Fósforo/análisis , Estaciones del Año , Reino Unido , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...