Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Rev ; 75(6): 1167-1199, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37684054

RESUMEN

The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.


Asunto(s)
Neoplasias , Neuropéptidos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Neuropéptidos/metabolismo , Péptidos , Neoplasias/tratamiento farmacológico , Biomarcadores
2.
Front Cell Dev Biol ; 11: 1094941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250892

RESUMEN

Introduction: Annexin A2 (AnxA2) plays a critical role in cell transformation, immune response, and resistance to cancer therapy. Besides functioning as a calcium- and lipidbinding protein, AnxA2 also acts as an mRNA-binding protein, for instance, by interacting with regulatory regions of specific cytoskeleton-associated mRNAs. Methods and Results: Nanomolar concentrations of FL3, an inhibitor of the translation factor eIF4A, transiently increases the expression of AnxA2 in PC12 cells and stimulates shortterm transcription/translation of anxA2 mRNA in the rabbit reticulocyte lysate. AnxA2 regulates the translation of its cognate mRNA by a feed-back mechanism, which can partly be relieved by FL3. Results obtained using the holdup chromatographic retention assay results suggest that AnxA2 interacts transiently with eIF4E (possibly eIF4G) and PABP in an RNA-independent manner while cap pulldown experiments indicate a more stable RNA-dependent interaction. Short-term (2 h) treatment of PC12 cells with FL3 increases the amount of eIF4A in cap pulldown complexes of total lysates, but not of the cytoskeletal fraction. AnxA2 is only present in cap analogue-purified initiation complexes from the cytoskeletal fraction and not total lysates confirming that AnxA2 binds to a specific subpopulation of mRNAs. Discussion: Thus, AnxA2 interacts with PABP1 and subunits of the initiation complex eIF4F, explaining its inhibitory effect on translation by preventing the formation of the full eIF4F complex. This interaction appears to be modulated by FL3. These novel findings shed light on the regulation of translation by AnxA2 and contribute to a better understanding of the mechanism of action of eIF4A inhibitors.

4.
Front Cardiovasc Med ; 9: 929259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911555

RESUMEN

Heart failure (HF) and cancer are responsible for 50% of all deaths in middle-aged people. These diseases are tightly linked, which is supported by recent epidemiological studies and case control studies, demonstrating that HF patients have a higher risk to develop cancer such as lung and breast cancer. For HF patients, a one-size-fits-all clinical management strategy is not effective and patient management represents a major economical and clinical burden. Anti-cancer treatments-mediated cardiotoxicity, leading to HF have been extensively studied. However, recent studies showed that even before the initiation of cancer therapy, cancer patients presented impairments in the cardiovascular functions and exercise capacity. Thus, the optimal cardioprotective and surveillance strategies should be applied to cancer patients with pre-existing HF. Recently, preclinical studies addressed the hypothesis that there is bilateral interaction between cardiac injury and cancer development. Understanding of molecular mechanisms of HF-cancer interaction can define the profiles of bilateral signaling networks, and identify the disease-specific biomarkers and possibly therapeutic targets. Here we discuss the shared pathological events, and some treatments of cancer- and HF-mediated risk incidence. Finally, we address the evidences on bilateral connection between cardiac injury (HF and early cardiac remodeling) and cancer through secreted factors (secretoms).

5.
Eur J Med Chem ; 242: 114635, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988448

RESUMEN

Fluorizoline is a cytotoxic trifluorothiazoline that targets the scaffold proteins prohibitins-1 and -2 (PHB1/2) to inhibit the kinase C-RAF and promote the expression of the cyclin-dependent kinase inhibitor p21 to induce cancer cell death. In melanocytes, fluorizoline also induces the synthesis of melanin. Herein we report the first structural requirement of fluorizoline analogues for these activities. We identified in particular some compounds that display enhanced anti-C-RAF and anti-MEK activities, and a higher cytotoxicity in HeLa cells compared to fluorizoline. These results provide a foundation for further optimization of PHB ligands for the treatment of cancers. We also discovered an analogue of fluorizoline that displays pharmacological effects opposed to those of fluorizoline and that can be used as a chemical tool to explore PHB signaling in cancers and other diseases.


Asunto(s)
Apoptosis , Prohibitinas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HeLa , Humanos , Ligandos , Melaninas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/farmacología , Proteínas Represoras , Factores de Transcripción/metabolismo
6.
Front Cardiovasc Med ; 8: 694711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386529

RESUMEN

Vascular toxicity is a frequent adverse effect of current anticancer chemotherapies and often results from endothelial dysfunction. Vascular endothelial growth factor inhibitors (VEGFi), anthracyclines, plant alkaloids, alkylating agents, antimetabolites, and radiation therapy evoke vascular toxicity. These anticancer treatments not only affect tumor vascularization in a beneficial manner, they also damage ECs in the heart. Cardiac ECs have a vital role in cardiovascular functions including hemostasis, inflammatory and coagulation responses, vasculogenesis, and angiogenesis. EC damage can be resulted from capturing angiogenic factors, inhibiting EC proliferation, survival and signal transduction, or altering vascular tone. EC dysfunction accounts for the pathogenesis of myocardial infarction, atherothrombosis, microangiopathies, and hypertension. In this review, we provide a comprehensive overview of the effects of chemotherapeutic agents on vascular toxicity leading to hypertension, microvascular rarefaction thrombosis and atherosclerosis, and affecting drug delivery. We also describe the potential therapeutic approaches such as vascular endothelial growth factor (VEGF)-B and prokineticin receptor-1 agonists to maintain endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor effectiveness.

8.
J Dev Biol ; 8(4)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33376231

RESUMEN

The authors wish to make the following corrections to this paper [...].

9.
Bioorg Med Chem Lett ; 30(22): 127600, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035678

RESUMEN

The stomatin/prohibitin/flotillin/HflK/HflC (SPFH) domain is present in an evolutionarily conserved family of proteins that regulate a myriad of signaling pathways in archaea, bacteria and eukaryotes. The most studied SPFH proteins, prohibitins, have already been targeted by different families of small molecules to induce anticancer, cardioprotective, anti-inflammatory, antiviral, and antiosteoporotic activities. Ligands of other SPFH proteins have also been identified and shown to act as anesthetics, anti-allodynia, anticancer, and anti-inflammatory agents. These findings indicate that modulators of human or bacterial SPFH proteins can be developed to treat a wide variety of human disorders.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Enfermedad , Humanos , Ligandos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
11.
Pharmacol Res ; 160: 105190, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32937177

RESUMEN

Heart and brain development occur simultaneously during the embryogenesis, and both organ development and injuries are interconnected. Early neuronal and cardiac injuries share mutual cellular events, such as angiogenesis and plasticity that could either delay disease progression or, in the long run, result in detrimental health effects. For this reason, the common mechanisms provide a new and previously undervalued window of opportunity for intervention. Because angiogenesis, cardiogenesis and neurogenesis are essential for the development and regeneration of the heart and brain, we discuss therein the role of prokineticin as an angiogenic neuropeptide in heart-brain development and injuries. We focus on the role of prokineticin signaling and the effect of drugs targeting prokineticin receptors in neuroprotection and cardioprotection, with a special emphasis on heart failure, neurodegenerativParkinson's disease and ischemic heart and brain injuries. Indeed, prokineticin triggers common pro-survival signaling pathway in heart and brain. Our review aims at stimulating researchers and clinicians in neurocardiology to focus on the role of prokineticin signaling in the reciprocal interaction between heart and brain. We hope to facilitate the discovery of new treatment strategies, acting in both heart and brain degenerative diseases.


Asunto(s)
Encefalopatías/genética , Encéfalo/crecimiento & desarrollo , Cardiopatías/genética , Corazón/crecimiento & desarrollo , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina/genética , Factor de Crecimiento Endotelial Vascular Derivado de Glándula Endocrina/fisiología , Animales , Encéfalo/fisiología , Corazón/fisiología , Humanos , Neurogénesis/genética , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología
12.
Eur J Med Chem ; 203: 112653, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32693294

RESUMEN

Flavaglines are cyclopenta[b]benzofurans found in plants of the genus Aglaia, several species of which are used in traditional Chinese medicine. These compounds target the initiation factor of translation eIF4A and the scaffold proteins prohibitins-1 and 2 (PHB1/2) to exert various pharmacological activities, including antiviral effects against several types of viruses, including coronaviruses. This review is focused on the antiviral effects of flavaglines and their therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Asunto(s)
Aglaia/química , Antivirales/uso terapéutico , Productos Biológicos/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Factor 4A Eucariótico de Iniciación/genética , Neumonía Viral/tratamiento farmacológico , Proteínas Represoras/genética , Animales , COVID-19 , Factor 4A Eucariótico de Iniciación/efectos de los fármacos , Humanos , Medicina Tradicional China , Pandemias , Prohibitinas , Proteínas Represoras/efectos de los fármacos
13.
Cell Mol Life Sci ; 77(18): 3525-3546, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32062751

RESUMEN

Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.


Asunto(s)
Cardiopatías/patología , Ligandos , Neoplasias/terapia , Enfermedades del Sistema Nervioso/terapia , Osteoporosis/terapia , Proteínas Represoras/metabolismo , Expresión Génica , Cardiopatías/metabolismo , Cardiopatías/terapia , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Osteoporosis/metabolismo , Osteoporosis/patología , Prohibitinas , Procesamiento Proteico-Postraduccional , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal
14.
Eur J Med Chem ; 186: 111859, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31735574

RESUMEN

The scaffold proteins prohibitins-1 and 2 (PHB1/2) play many important roles in coordinating many cell signaling pathways and represent emerging targets in cardiology and oncology. We previously reported that a family of natural products derivatives, flavaglines, binds to PHB1/2 to exert cardioprotectant and anti-cancer effects. However, flavaglines also target the initiation factor of translation eIF4A, which doesn't contribute to cardioprotection and may even induce some adverse effects. Herein, we report the development of a convenient and robust synthesis of the new PHB2 ligand 2'-phenylpyrrolidinyl-spirooxindole, and its analogues. We discovered that these compounds displays cardioprotective effect against doxorubicin mediated cardiotoxicity and uncovered the structural requirement for this activity. We identified in particular some analogues that are more cardioprotectant than flavaglines. Pull-down experiments demonstrated that these compounds bind not only to PHB2 but also PHB1. These novel PHB ligands may provide the basis for the development of new drugs candidates to protect the heart against the adverse effects of anticancer treatments.


Asunto(s)
Cardiotónicos/farmacología , Descubrimiento de Drogas , Miocitos Cardíacos/efectos de los fármacos , Oxindoles/farmacología , Proteínas Represoras/antagonistas & inhibidores , Compuestos de Espiro/farmacología , Apoptosis/efectos de los fármacos , Cardiotónicos/síntesis química , Cardiotónicos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/antagonistas & inhibidores , Doxorrubicina/farmacología , Humanos , Ligandos , Estructura Molecular , Miocitos Cardíacos/metabolismo , Oxindoles/síntesis química , Oxindoles/química , Prohibitinas , Proteínas Represoras/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad
15.
JACC CardioOncol ; 1(1): 84-102, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34396166

RESUMEN

OBJECTIVES: This study investigated how different concentrations of doxorubicin (DOX) can affect the function of cardiac cells. This study also examined whether activation of prokineticin receptor (PKR)-1 by a nonpeptide agonist, IS20, prevents DOX-induced cardiovascular toxicity in mouse models. BACKGROUND: High prevalence of heart failure during and following cancer treatments remains a subject of intense research and therapeutic interest. METHODS: This study used cultured cardiomyocytes, endothelial cells (ECs), and epicardium-derived progenitor cells (EDPCs) for in vitro assays, tumor-bearing models, and acute and chronic toxicity mouse models for in vivo assays. RESULTS: Brief exposure to cardiomyocytes with high-dose DOX increased the accumulation of reactive oxygen species (ROS) by inhibiting a detoxification mechanism via stabilization of cytoplasmic nuclear factor, erythroid 2. Prolonged exposure to medium-dose DOX induced apoptosis in cardiomyocytes, ECs, and EDPCs. However, low-dose DOX promoted functional defects without inducing apoptosis in EDPCs and ECs. IS20 alleviated detrimental effects of DOX in cardiac cells by activating the serin threonin protein kinase B (Akt) or mitogen-activated protein kinase pathways. Genetic or pharmacological inactivation of PKR1 subdues these effects of IS20. In a chronic mouse model of DOX cardiotoxicity, IS20 normalized an elevated serum marker of cardiotoxicity and vascular and EDPC deficits, attenuated apoptosis and fibrosis, and improved the survival rate and cardiac function. IS20 did not interfere with the cytotoxicity or antitumor effects of DOX in breast cancer lines or in a mouse model of breast cancer, but it did attenuate the decreases in left ventricular diastolic volume induced by acute DOX treatment. CONCLUSIONS: This study identified the molecular and cellular signature of dose-dependent, DOX-mediated cardiotoxicity and provided evidence that PKR-1 is a promising target to combat cardiotoxicity of cancer treatments.

16.
Trends Cardiovasc Med ; 29(4): 200-204, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30172578

RESUMEN

Congenital heart disease is the most common birth defect, affecting 1.35 million newborns every year. Heart failure is a primary cause of late morbidity and mortality after myocardial infarction. Heart development is involved in several rounds of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). Errors in these processes contribute to congenital heart disease, and exert deleterious effects on the heart and circulation after myocardial infarction. The identification of factors that are involved in heart development and disease, and the development of new approaches for the treatment of these disorders are of great interest. G protein coupled receptors (GPCRs) comprise 40% of clinically used drug targets, and their signaling are vital components of the heart during development, cardiac repair and in cardiac disease pathogenesis. This review focuses on the importance of EMT program in the heart, and outlines the newly identified GPCRs as potential therapeutic targets of reprogramming EMT to support cardiac cell fate during heart development and after myocardial infarction. More specifically we discuss prokineticin, serotonin, sphingosine-1-phosphate and apelin receptors in heart development and diseases. Further understanding of the regulation of EMT/MET by GPCRs during development and in the adult hearts can provide the following clinical exploitation of these pathways.


Asunto(s)
Transición Epitelial-Mesenquimal , Cardiopatías Congénitas/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Corazón Fetal/metabolismo , Corazón Fetal/patología , Fibrosis , Cardiopatías Congénitas/patología , Humanos , Morfogénesis , Infarto del Miocardio/patología , Miocardio/patología
17.
Front Cardiovasc Med ; 6: 194, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039239

RESUMEN

Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.

18.
Front Pharmacol ; 9: 1262, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483123

RESUMEN

Cardiotoxicity is one of the main adverse effects of chemotheraphy, affecting the completion of cancer therapies and the short- and long-term quality of life. Anthracyclines are currently used to treat many cancers, including the various forms of leukemia, lymphoma, melanoma, uterine, breast, and gastric cancers. World Health Organization registered anthracyclines in the list of essential medicines. However, anthracyclines display a major cardiotoxicity that can ultimately culminate in congestive heart failure. Taking into account the growing rate of cancer survivorship, the clinical significance of anthracycline cardiotoxicity is an emerging medical issue. In this review, we focus on the key progenitor cells and cardiac cells (cardiomyocytes, fibroblasts, and vascular cells), focusing on the signaling pathways involved in cellular damage, and the clinical biomarkers in anthracycline-mediated cardiotoxicity.

19.
Eur J Med Chem ; 155: 880-888, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29960207

RESUMEN

Prohibitins 1 and 2 (PHB1/2) are scaffold proteins that are involved in both melanogenesis and oncogenic pathways. We hypothesized that a PHB1 ligand, melanogenin, may display anti-cancer effects in addition to its known melanogenic activity in melanocytes. Here, we disclose a convenient synthesis of melanogenin, and its analogs. We found that, among 57 new melanogenin analogs, two (Mel9 and Mel41) significantly promoted both melanogenesis in melanocytes by activating one of the PHB2-interacting proteins, microtubule-associated protein light chain 3 (LC3), and upregulating the expression of microphthalmia associated transcription factor (MITF). These analogs also activate ERK. Besides, in addition to their promelanogenic activities, we uncovered that melanogenin and its active analogs induce apoptosis in several cancer cell lines, including melanoma cells, and that this effect is caused by an inhibition of AKT survival pathway. Our findings present a new putative function for PHBs as regulators of LC3/ERK/MITF melanogenic signaling, and suggest that Mel9 and Mel41 may provide the basis for the development of new drugs candidates to treat melanoma and other types of cancers.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Melanoma/tratamiento farmacológico , Proteínas Represoras/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Melanocitos/efectos de los fármacos , Melanoma/patología , Estructura Molecular , Prohibitinas , Proteínas Represoras/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Stem Cells ; 36(10): 1589-1602, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29873146

RESUMEN

Epicardial adipose tissues (EATs) and vascular tissues may both belong to the mesoepithelial lineage that develops from epicardium-derived progenitor cells (EPDCs) in developing and injured hearts. Very little is known of the molecular mechanisms of EPDC contribution in EAT development and neovascularization in adult heart, which the topic remains a subject of intense therapeutic interest and scientific debate. Here we studied the epigenetic control of stemness and anti-adipogenic and pro-vasculogenic fate of human EPDCs (hEPDCs), through investigating an angiogenic hormone, prokineticin-2 (PK2) signaling via its receptor PKR1. We found that hEPDCs spontaneously undergoes epithelial-to-mesenchymal transformation (EMT), and are not predestined for the vascular lineages. However, PK2 via a histone demethylase KDM6A inhibits EMT, and induces asymmetric division, leading to self-renewal and formation of vascular and epithelial/endothelial precursors with angiogenic potential capable of differentiating into vascular smooth muscle and endothelial cells. PK2 upregulates and activates KDM6A to inhibit repressive histone H3K27me3 marks on promoters of vascular genes (Flk-1 and SM22α) involved in vascular lineage commitment and maturation. In PK2-mediated anti-adipogenic signaling, KDM6A stabilizes and increases cytoplasmic ß-catenin levels to repress peroxisome proliferator-activated receptor-γ expression and activity. Our findings offer additional molecular targets to manipulate hEPDCs-involved tissue repair/regeneration in cardiometabolic and ischemic heart diseases. Stem Cells 2018;36:1589-1602.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Hormonas Gastrointestinales/metabolismo , Neuropéptidos/metabolismo , Pericardio/citología , Pericardio/metabolismo , Diferenciación Celular/fisiología , Epigénesis Genética , Transición Epitelial-Mesenquimal , Hormonas Gastrointestinales/genética , Histona Demetilasas/metabolismo , Humanos , Neuropéptidos/genética , Proteínas Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...