Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38794279

RESUMEN

The potential for native proteins to serve as a platform for biocompatible, targeted, and personalized therapeutics in the context of genetic and metabolic disorders is vast. Nevertheless, their clinical application encounters challenges, particularly in overcoming biological barriers and addressing the complexities involved in engineering transmembrane permeability. This study is dedicated to the development of a multifunctional nanoentity in which a model therapeutic protein is covalently linked to a cell-penetrating peptide, NickFect 55, with the objective of enhancing its intracellular delivery. Successful binding of the nanoentity fragments was achieved through the utilization of an intein-mediated protein-trans splicing reaction. Our research demonstrates that the fully assembled nanoentity-containing protein was effectively internalized by the cells, underscoring the potential of this approach in overcoming barriers associated with protein-based therapeutics for the treatment of genetic disorders.

2.
Biomolecules ; 13(12)2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38136622

RESUMEN

The low bioavailability and high toxicity of plasmid DNA (pDNA)-based therapeutics pose challenges for their in vivo application. Extracellular vesicles (EVs) have great potential to overcome these limitations, as they are biocompatible native cargo carriers. Various methods for loading pDNA into EVs, including electroporation, sonication, and co-incubation, have been previously investigated, but their success has been questionable. In this study, we report a unique method for loading EVs with pDNA through transient transfection using cell-penetrating peptides (CPPs). With this method, we found a 104-fold increase in the expression levels of the luciferase reporter protein in recipient cells compared to the untreated cells. These data point to the high transfection efficacy and bioavailability of the delivered encapsulated nucleic acid. Furthermore, the in vivo experimental data indicate that the use of pDNA-loaded EVs as native delivery vehicles reduces the toxic effects associated with traditional nucleic acid (NA) delivery and treatment.


Asunto(s)
Péptidos de Penetración Celular , Vesículas Extracelulares , Ácidos Nucleicos , Péptidos de Penetración Celular/metabolismo , ADN/metabolismo , Plásmidos/genética , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901707

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-ß (Aß) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aß. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aß interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aß aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aß-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.


Asunto(s)
Enfermedad de Alzheimer , Péptidos de Penetración Celular , Enfermedades Neurodegenerativas , Animales , Humanos , Péptidos de Penetración Celular/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Señales de Clasificación de Proteína , Proteínas tau/metabolismo , Mamíferos/metabolismo
4.
Pharmaceutics ; 14(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145697

RESUMEN

Therapeutic proteins are currently at the apex of innovation in pharmaceutical medicine. However, their industrial production is technically challenging and improved methods for transient transfection of mammalian cell cultures are necessary. We aimed to find a fast, microliter-scale transfection assay that allows the prediction of protein expression in the transient production settings. We used an array of lipid, polymeric and cell-penetrating peptide transfection reagents, and compared their performance in various high throughput transfection assays to their performance in protein (antibody) expression in professional protein-producer cell lines. First, we show that some of the most frequently used microliter-scale transfection efficacy assays fail to predict performance in the protein production in milliliter and liter scale settings. We found that CHO suspension culture post-transfection EGFP(+) population and SEAP quantitation correlate with large-scale protein production, whereas the adhesion culture assays and transfection of pLuc are non-predictive. Second, we demonstrated that cell-penetrating peptide-based transfection achieves significantly higher protein yields compared to PEI and lipoplex methods in both CHO and HEK293 producer cell lines. In this work we demonstrate a CPP-based transient protein expression approach that significantly outperformed the current industry standard workhorse method of PEI.

5.
Methods Mol Biol ; 2383: 529-545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766311

RESUMEN

The efficacy of transfection reagents and nanoparticles is often assessed by measuring levels of expressed reporter protein. Fluorescence and luminescence based assays provide sensitive, quantifiable and repeatable approaches. The genes expressing reporter protein can be integrated into the cells to create stable reporter cell lines or can be expressed from a transfected plasmid. Green fluorescent protein, luciferase, and secreted alkaline phosphatase are well-established reporters with versatile applications. Monitoring changes in live cells during and after transfection offer opportunities to reveal related mechanisms, efficacy, and bottlenecks of transfection.In this chapter, we describe the experimental setup and considerations for in vitro screening of delivery vectors. This can further be extended to measurements in reporter cell lines.


Asunto(s)
Técnicas de Cultivo de Célula , Mamíferos , Animales , Línea Celular , Genes Reporteros , Plásmidos/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA