Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Psychoneuroendocrinology ; 160: 106918, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065040

RESUMEN

OBJECTIVE: Circulating cell-free DNA (cfDNA) holds promise as a rapid and convenient biomarker for identifying individuals with eating disorders. To investigate this hypothesis, we measured plasma cfDNA in patients with different eating disorders. METHODS: In this study, 110 participants (98 patients with eating disorders divided into 30 patients with bulimia nervosa, 33 patients with anorexia nervosa (AN) Restricting subtype, 35 patients with AN Binge-eating/purging subtype and 12 controls) were enrolled. We measured both cell-free nuclear DNA (cf-nDNA) and cell-free mitochondrial DNA (cf-mtDNA) from plasma using two specific droplet digital PCR assays each, referring to two amplicon sizes. RESULTS: Levels of plasma cf-nDNA and cf-mtDNA showed no significant differences between control participants and those with eating disorders. However, we observed a higher proportion of long cf-nDNA fragments in patients with eating disorders, suggesting its potential as a biomarker for eating disorders. CONCLUSION: This is the first study of cfDNA in patients with eating disorders. Our findings highlight the potential for qualitative exploration of cfDNA, although not of quantitative interest. Full characterization of cfDNA may serve as a valuable biomarker for eating disorders and provide some insights into the hidden mechanisms underlying the chronic development of these conditions. Future studies are needed to confirm or refute this hypothesis.


Asunto(s)
Anorexia Nerviosa , Ácidos Nucleicos Libres de Células , Trastornos de Alimentación y de la Ingestión de Alimentos , Humanos , Trastornos de Alimentación y de la Ingestión de Alimentos/diagnóstico , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Anorexia Nerviosa/diagnóstico , Anorexia Nerviosa/genética , Biomarcadores , ADN Mitocondrial/genética
2.
J Mol Diagn ; 26(2): 150-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008284

RESUMEN

Neurofibromatosis type-1 is a genetic disorder caused by loss-of-function variants in the tumor-suppressor NF1. Approximately 4% to 11% of neurofibromatosis type-1 patients have a NF1 locus complete deletion resulting from nonallelic homologous recombination between low copy repeats. Codeleted genes probably account for the more severe phenotype observed in NF1-deleted patients. This genotype-phenotype correlation highlights the need for a detailed molecular description. A droplet digital PCR (ddPCR) set along the NF1 locus was designed to delimitate the three recurrent NF1 deletion breakpoints. The ddPCR was tested in 121 samples from nonrelated NF1-deleted patients. Classification based on ddPCR versus multiplex ligation-dependent probe amplification (MLPA) was compared. In addition, microsatellites were analyzed to identify parental origin of deletions. ddPCR identified 77 type-1 (64%), 20 type-2 (16%), 7 type-3 (6%), and 17 atypical deletions (14%). The results were comparable with MLPA, except for three atypical deletions misclassified as type-2 using MLPA, for which the SUZ12 gene was not deleted. A significant maternal bias (25 of 30) in the origin of deletions was identified. This study proposes a fast and efficient ddPCR quantification to allow fine NF1 deletion classification. It indicates that ddPCR can be implemented easily into routine diagnosis to complement the techniques dedicated to NF1 point variant identification. This new tool may help unravel the genetic basis conditioning phenotypic variability in NF1-deleted patients and offer tailored genetic counseling.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/genética , Reacción en Cadena de la Polimerasa Multiplex , Recombinación Homóloga , Fenotipo , Familia , Eliminación de Gen
3.
Gynecol Obstet Fertil Senol ; 51(10): 463-470, 2023 10.
Artículo en Francés | MEDLINE | ID: mdl-37517661

RESUMEN

OBJECTIVES: The screening of fetal aneuploidies and non-invasive prenatal diagnosis of monogenic diseases (NIPD-MD) both rely on the study of free fetal DNA in maternal circulation, but their respective rise was unequal. Development of NIPD-MD has taken longer as it represents a less attractive commercial dynamic for industry, but also because it usually involves the development of tailored tests specific to each pathogenic variant. METHODS: We have carried out a review of the literature on the various indications and technologies involved in the use of NIPD-MM. We present its current implementation and its development in France. RESULTS: To date, NIPD-MD has been routinely offered in France for several years by the laboratories of the French NIPD-MD network but remains mostly limited to the exclusion of paternal or de novo variants, the exclusion DPNI-MD. Indeed, it is still difficult to study the transmission of maternal variants from circulating free DNA analysis, due to its biological complexity: coexistence and predominance of similar DNA sequences of maternal origin. Different strategies, either direct or indirect, are being evaluated to establish fetal status regardless of the parental origin of the disease or its transmission mode. The emergence of commercial screening solutions for monogenic diseases complements the arsenal of prenatal exploration tools for these diseases. CONCLUSION: The multitude of existing technologies and protocols may complicate the information provided during antenatal consultations, but mastery of know-how and knowledge of ethical issues of NIPD-MD will ensure optimal service and better management of pregnancies at risk of transmitting monogenic disease.


Asunto(s)
Feto , Diagnóstico Prenatal , Embarazo , Humanos , Femenino , Diagnóstico Prenatal/métodos , Atención Prenatal , ADN/genética , Francia
4.
Arthritis Rheumatol ; 75(11): 2003-2013, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37134130

RESUMEN

OBJECTIVE: Interindividual variability in response to rituximab remains unexplored in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides. Rituximab pharmacokinetics (PK) and pharmacodynamics (PD) as well as genetic polymorphisms could contribute to variability. This ancillary study of the MAINRITSAN 2 trial aimed to explore the relationship between rituximab plasma concentration, genetic polymorphisms in PK/PD candidate genes, and clinical outcomes. METHODS: Patients included in the MAINRITSAN2 trial (ClinicalTrials.gov identifier: NCT01731561) were randomized to receive a 500-mg fixed-schedule rituximab infusion or an individually tailored regimen. Rituximab plasma concentrations at month 3 (CM3) were assessed. DNA samples (n = 53) were genotyped for single-nucleotide polymorphisms within 88 putative PK/PD candidate genes. The relationship between PK/PD outcomes and genetic variants was investigated using logistic linear regression in additive and recessive genetic models. RESULTS: One hundred and thirty-five patients were included. The frequency of underexposed patients (<4 µg/ml) in the fixed-schedule group was statistically lower compared to that in the tailored-infusion group (2.0% versus 18.0%; P = 0.02, respectively). Low rituximab plasma concentration at 3 months (CM3 <4 µg/ml) was an independent risk factor for major relapse (odds ratio 6.56 [95% confidence interval (95% CI) 1.26-34.09]; P = 0.025) at month 28 (M28). A sensitivity survival analysis also identified CM3 <4 µg/ml as an independent risk factor for major relapse (hazard ratio [HR] 4.81 [95% CI 1.56-14.82]; P = 0.006) and relapse (HR 2.70 [95% CI 1.02-7.15]; P = 0.046). STAT4 rs2278940 and PRKCA rs8076312 were significantly associated with CM3 but not with major relapse onset at M28. CONCLUSION: These results suggest that drug monitoring could be useful to individualize the schedule of rituximab administration within the maintenance phase.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Inmunosupresores , Humanos , Rituximab/uso terapéutico , Inmunosupresores/uso terapéutico , Anticuerpos Anticitoplasma de Neutrófilos , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/genética , Inducción de Remisión , Recurrencia
5.
Artículo en Inglés | MEDLINE | ID: mdl-37068545

RESUMEN

Common mental disorders (CMDs) such as depression, anxiety and post-traumatic stress disorders account for 40% of the global burden of disease. In most psychiatric disorders, both diagnosis and monitoring can be challenging, frequently requiring long-term investigation and follow-up. The discovery of better methods to facilitate accurate and fast diagnosis and monitoring of psychiatric disorders is therefore crucial. Circulating nucleic acids (CNAs) are among these new tools. CNAs (DNA or RNA) can be found circulating in body biofluids, and can be isolated from biological samples such as plasma. They can serve as biomarkers for diagnosis and prognoses. They appear to be promising for disorders (such as psychiatric disorders) that involve organs or structures that are difficult to assess. This review presents an accurate assessment of the current literature about the use of plasma and serum cell-free DNA (cfDNA) as biomarkers for several aspects of psychiatric disorders: diagnosis, prognosis, treatment response, and monitor disease progression. For each psychiatric disorder, we examine the effect sizes to give insights on the efficacy of CNAs as biomarkers. The global effect size for plasma nuclear and mitochondrial cfDNA studies was generally moderate for psychiatric disorders. In addition, we discuss future applications of CNAs and particularly cfDNA as non-invasive biomarkers for these diseases.


Asunto(s)
Ácidos Nucleicos Libres de Células , Psiquiatría , Humanos , Ácidos Nucleicos Libres de Células/genética , Biomarcadores , Pronóstico , ADN
6.
PLoS One ; 18(4): e0280976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093806

RESUMEN

Non-invasive prenatal diagnosis of single-gene disorders (SGD-NIPD) has been widely accepted, but is mostly limited to the exclusion of either paternal or de novo mutations. Indeed, it is still difficult to infer the inheritance of the maternal allele from cell-free DNA (cfDNA) analysis. Based on the study of maternal haplotype imbalance in cfDNA, relative haplotype dosage (RHDO) was developed to address this challenge. Although RHDO has been shown to be reliable, robust control of statistical error and explicit delineation of critical parameters for assessing the quality of the analysis have not been fully addressed. We present here a universal and adaptable enhanced-RHDO (eRHDO) procedure through an automated bioinformatics pipeline with a didactic visualization of the results, aiming to be applied for any SGD-NIPD in routine care. A training cohort of 43 families carrying CFTR, NF1, DMD, or F8 mutations allowed the characterization and optimal setting of several adjustable data variables, such as minimum sequencing depth, type 1 and type 2 statistical errors, as well as the quality assessment of intermediate steps and final results by block score and concordance score. Validation was successfully performed on a test cohort of 56 pregnancies. Finally, computer simulations were used to estimate the effect of fetal-fraction, sequencing depth and number of informative SNPs on the quality of results. Our workflow proved to be robust, as we obtained conclusive and correctly inferred fetal genotypes in 94.9% of cases, with no false-negative or false-positive results. By standardizing data generation and analysis, we fully describe a turnkey protocol for laboratories wishing to offer eRHDO-based non-invasive prenatal diagnosis for single-gene disorders as an alternative to conventional prenatal diagnosis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Pruebas Prenatales no Invasivas , Embarazo , Femenino , Humanos , Haplotipos , Pruebas Prenatales no Invasivas/métodos , Diagnóstico Prenatal/métodos , Genotipo
7.
Neuromuscul Disord ; 33(5): 367-370, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996638

RESUMEN

Uniparental isodisomy is a condition where both chromosomes of a pair are inherited from one parental homologue. If a deleterious variant is present on the duplicated chromosome, its homozygosity can reveal an autosomal recessive disorder in the offspring of a heterozygous carrier. Limb-girdle muscular dystrophy (LGMD) R3 is an autosomal recessive inherited disease that is associated with alpha-sarcoglycan gene (SGCA) variants. We report the first published case of LGMDR3 due to a homozygous variant in SGCA unmasked by uniparental isodisomy. The patient is an 8-year-old who experienced delayed motor milestones but normal cognitive development. He presented with muscle pain and elevated plasma creatine kinase. Sequencing of the SGCA gene showed a homozygous pathogenic variant. Parents were not related and only the father was heterozygous for the pathogenic variant. A chromosomal microarray revealed a complete chromosome 17 copy number neutral loss of heterozygosity encompassing SGCA, indicating paternal uniparental isodisomy.


Asunto(s)
Distrofia Muscular de Cinturas , Disomía Uniparental , Masculino , Humanos , Niño , Disomía Uniparental/genética , Cromosomas Humanos Par 17/genética , Distrofia Muscular de Cinturas/genética , Sarcoglicanos/genética , Padre
8.
Birth Defects Res ; 115(5): 563-571, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36538874

RESUMEN

BACKGROUND: Hereditary lymphedema 1 is a rare congenital condition, characterized by the development of chronic swelling in body parts. It is highly variable in expression and age of onset with different presentations: from feet edema to hydrops fetalis. This affection is genetically heterogeneous with autosomal dominant inheritance and incomplete penetrance due to a mutation in the FLT4 gene in most cases. CASES: In our study, we report on two fetuses harboring congenital lymphedema with FLT4 variation and review the prenatal confirmed ones of the literatures. Our cases were selected within fetuses explored by exome sequencing in a diagnosis setting. Prenatal ultrasonography showed hydrops fetalis in one case and an increased nuchal translucency with hydrothorax in the other. Comparative genomic hybridization array on amniocentesis was normal in both cases. Exome sequencing identified a variation p.(Ser1275Thr) and p.(Ser1275Arg) in fetus 1 and fetus 2 in the FLT4 gene, respectively. A de novo mutation at the same codon was reported in prenatal literature suggesting possible genotype phenotype correlation. CONCLUSION: Cystic hygroma/hydrops fetalis are possible manifestations of several disorders. This study illustrates how the integration of exome sequencing in prenatal clinical practice can facilitate the diagnosis and genetic counseling of heterogeneous developmental affections.


Asunto(s)
Hidropesía Fetal , Linfedema , Humanos , Embarazo , Femenino , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Hibridación Genómica Comparativa , Linfedema/congénito , Linfedema/diagnóstico , Linfedema/genética , Ultrasonografía Prenatal , Mutación , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
9.
Hum Genet ; 142(1): 1-9, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35941319

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but highly variable expressivity. In most patients, Next Generation Sequencing (NGS) technologies allow the identification of a loss-of-function pathogenic variant in the NF1 gene, a negative regulator of the RAS-MAPK pathway. We describe the 5-year diagnosis wandering of a patient with a clear NF1 clinical diagnosis, but no molecular diagnosis using standard molecular technologies. The patient presented with a typical NF1 phenotype but NF1 targeted NGS, NF1 transcript analysis, MLPA, and array comparative genomic hybridization failed to reveal a genetic aberration. After 5 years of unsuccessful investigations, trio WGS finally identified a de novo mosaic (VAF ~ 14%) 24.6 kb germline deletion encompassing the promoter and first exon of NF1. This case report illustrates the relevance of WGS to detect structural variants including copy number variants that would be missed by alternative approaches. The identification of the causal pathogenic variant allowed a tailored genetic counseling with a targeted non-invasive prenatal diagnosis by detecting the deletion in plasmatic cell-free DNA from the proband's pregnant partner. This report clearly highlights the need to make WGS a clinically accessible test, offering a tremendous opportunity to identify a molecular diagnosis for otherwise unsolved cases.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/genética , Genes de Neurofibromatosis 1 , Hibridación Genómica Comparativa , Exones , Secuenciación Completa del Genoma
10.
J Mol Diagn ; 24(7): 719-726, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580751

RESUMEN

Titin protein is responsible for muscle elasticity. The TTN gene, composed of 364 exons, is subjected to extensive alternative splicing and leads to different isoforms expressed in skeletal and cardiac muscle. Variants in TTN are responsible for myopathies with a wide phenotypic spectrum and autosomal dominant or recessive transmission. The I-band coding domain, highly subject to alternative splicing, contains a three-zone block of repeated sequences with 99% homology. Sequencing and localization of variants in these areas are complex when using short-reads sequencing, a second-generation sequencing technique. We have implemented a protocol based on the third-generation sequencing technology (long-reads sequencing). This new method allows us to localize variants in these repeated areas to improve the diagnosis of TTN-related myopathies and offer the analysis of relatives in postnatal or in prenatal screening.


Asunto(s)
Enfermedades Musculares , Empalme Alternativo/genética , Conectina/genética , Exones/genética , Humanos , Enfermedades Musculares/genética , Isoformas de Proteínas/genética
11.
BJOG ; 129(11): 1879-1886, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35486001

RESUMEN

OBJECTIVES: Cell-free fetal DNA (cffDNA) analysis is performed routinely for aneuploidy screening, RhD genotyping or sex determination. Although applications to single gene disorders (SGD) are being rapidly developed worldwide, only a few laboratories offer cffDNA testing routinely as a diagnosis service for this indication. In a previous report, we described a standardised protocol for non-invasive exclusion of paternal variant in SGD. Three years later, we now report our clinical experience with the protocol. DESIGN: Descriptive study. SETTING: Multi-centre French. POPULATION: Indications for referral included pregnancies at risk of 25% or 50% of paternally inherited SGD, and pregnancies associated with an increased risk of SGD due to a de novo variant, either from strongly suggestive ultrasound findings or from a possible parental germinal mosaicism in the context of a previously affected child. METHODS: Non-invasive prenatal diagnosis was performed using custom assays for droplet digital PCR. Feasibility, diagnostic performance and turn-around time were evaluated. RESULTS: Mean time for a new assay design and validation was evaluated at 14 days, and mean result reporting time was 6 days. All referred pathogenic variants could be targeted except one located in a complex genomic region. A result was obtained for every 198 referrals except two. CONCLUSION: This service was successfully implemented as a routine laboratory practice. It has been widely adopted by French clinicians and patients for paternal variant exclusion in various disorders. TWEETABLE ABSTRACT: A robust approach to non-invasive prenatal exclusion of paternal pathogenic variant in a diagnosis setting.


Asunto(s)
Ácidos Nucleicos Libres de Células , Pruebas Prenatales no Invasivas , Aneuploidia , Niño , Femenino , Humanos , Masculino , Mutación , Herencia Paterna , Reacción en Cadena de la Polimerasa/métodos , Embarazo , Diagnóstico Prenatal/métodos
12.
J Clin Endocrinol Metab ; 107(4): e1367-e1373, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34897474

RESUMEN

CONTEXT: Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disease caused by mutations in the tumor suppressor gene MEN1. The uncertainty of pathogenicity of MEN1 variants complexifies the selection of the patients likely to benefit from specific care. OBJECTIVE: MEN1-mutated patients should be offered tailored tumor screening and genetic counseling. We present a patient with hyperparathyroidism for whom genetic analysis identified a variant of uncertain significance in the MEN1 gene (NM_130799.2): c.654G > T p.(Arg218=). Additional functional genetic tests were performed to classify the variant as pathogenic and allowed prenatal testing. DESIGN: Targeted next generation sequencing identified a synonymous variant in the MEN1 gene in a 26-year-old male with symptomatic primary hyperparathyroidism. In silico and in vitro genetic tests were performed to assess variant pathogenicity. RESULTS: Genetic testing of the proband's unaffected parents showed the variant occurred de novo. Transcript study showed a splicing defect leading to an in-frame deletion. The classification of the MEN1 variant as pathogenic confirmed the diagnosis of MEN1 and recommended an adapted medical care and follow-up. Pathogenic classification also allowed to propose a genetic counseling to the proband and his wife. Noninvasive prenatal diagnosis was performed with a personalized medicine-based protocol by detection of the paternally inherited variant in maternal plasmatic cell free DNA, using digital PCR. CONCLUSION: We showed that functional genetic analysis can help to assess the pathogenicity of a MEN1 variant with crucial consequences for medical care and genetic counseling decisions.


Asunto(s)
Hiperparatiroidismo , Neoplasia Endocrina Múltiple Tipo 1 , Pruebas Prenatales no Invasivas , Adulto , Femenino , Pruebas Genéticas , Humanos , Hiperparatiroidismo/genética , Masculino , Neoplasia Endocrina Múltiple Tipo 1/genética , Herencia Paterna , Embarazo
13.
Brain Res ; 1772: 147670, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582789

RESUMEN

Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder. More than 95% of classic RETT syndrome cases result from pathogenic variants in the methyl-CpG binding protein 2 (MECP2) gene. Nevertheless, it has been established that a spectrum of neuropsychiatric phenotypes is associated with MECP2 variants in both females and males. We previously reported that microtubule growth velocity and vesicle transport directionality are altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared to that of their wild-type littermates suggesting deficit in microtubule dynamics. In this study, we report that administration of tubastatin A, a selective HDAC6 inhibitor, restored microtubule dynamics in Mecp2-deficient astrocytes. We furthermore report that daily doses of tubastatin A reversed early impaired exploratory behavior in male Mecp2308/y mice. These findings are a first step toward the validation of a novel treatment for RTT.


Asunto(s)
Conducta Animal , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/psicología , Animales , Astrocitos/metabolismo , Conducta Exploratoria , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/uso terapéutico , Indoles/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Conducta Social
14.
Eur J Med Genet ; 63(12): 104063, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32947049

RESUMEN

OBJECTIVE: To perform genotype-phenotype, clinical and molecular analysis in a large 3-generation family with autosomal dominant congenital spinal muscular atrophy. METHODS: Using a combined genetic approach including whole genome scanning, next generation sequencing-based multigene panel, whole genome sequencing, and targeted variant Sanger sequencing, we studied the proband and multiple affected individuals of this family who presented bilateral proximal lower limb muscle weakness and atrophy. RESULTS: We identified a novel heterozygous variant, c.1826T > C; p.Ile609Thr, in the DYNC1H1 gene localized within the common haplotype in the 14q32.3 chromosomal region which cosegregated with disease in this large family. Within the family, affected individuals were found to have a wide array of clinical variability. Although some individuals presented the typical lower motor neuron phenotype with areflexia and denervation, others presented with muscle weakness and atrophy, hyperreflexia, and absence of denervation suggesting a predominant upper motor neuron disease. In addition, some affected individuals presented with an intermediate phenotype characterized by hyperreflexia and denervation, expressing a combination of lower and upper motor neuron defects. CONCLUSION: Our study demonstrates the wide clinical variability associated with a single disease causing variant in DYNC1H1 gene and this variant demonstrated a high penetrance within this large family.


Asunto(s)
Dineínas Citoplasmáticas/genética , Atrofia Muscular Espinal/genética , Mutación Missense , Adolescente , Adulto , Niño , Preescolar , Femenino , Heterocigoto , Humanos , Extremidad Inferior/fisiopatología , Masculino , Persona de Mediana Edad , Neuronas Motoras/fisiología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/patología , Linaje , Fenotipo , Reflejo , Extremidad Superior/fisiopatología
15.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165730, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32070770

RESUMEN

Widespread random monoallelic gene expression (RMAE) effects influence about 10% of human genes. However, the mechanisms by which RME of autosomal genes is established and those by which it is maintained both remain open questions. Because the choice of allelic expression is randomly performed cell-by-cell, the RMAE mechanism is not observable in non-clonal cell populations or in whole tissues. Several target genes of MeCP2, the gene involved in Rett syndrome (RTT), have been previously described as subject to RMAE, suggesting that MeCP2 may be involved in the establishment and/or maintenance of RME of autosomal genes. To improve our knowledge on this largely unknown phenomenon, and to study the role of MeCP2 in RMAE, we compared RMA gene expression profiles in clonal cell cultures expressing wild-type MeCP2 versus mutant MeCP2 from a RTT patient carrying a pathogenic non-sense variant. Our data clearly demonstrated that MeCP2 deficiency does not affect significantly allelic gene expression of X-linked genes, imprinted genes as well as the RMAE profile in the majority of genes. However, the functional deficiency in MeCP2 appeared to disrupt the mono-allelic or the bi-allelic expression of at least 49 genes allowing us to define a specific signature of MECP2 mutated clones.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Alelos , Desequilibrio Alélico/genética , Regulación de la Expresión Génica/genética , Genes Ligados a X/genética , Humanos , Mutación/genética , Fenotipo , Síndrome de Rett/patología
16.
Ann Biol Clin (Paris) ; 77(6): 619-637, 2019 12 01.
Artículo en Francés | MEDLINE | ID: mdl-31859639

RESUMEN

This review is the second part of the workshop on digital PCR (dPCR) proposed by the working group of the French society of clinical biology. The first part of the paper discusses the advantages and limitations of dPCR for the search of different molecular abnormalities such as point mutations, copy number variants, DNA methylation, RNA analysis and a more innovative application, the single-cell dPCR. This synthesis makes it possible to propose a positioning of the dPCR compared to the other available technologies in a medical laboratory. In a second part, the main current applications of the dPCR will be addressed including the oncology of solid tumors and liquid biopsies, oncohematology and the follow-up of hemopathies treatments by hematopoietic stem cell transplantation. We will also detail non-invasive prenatal diagnosis and diagnosis of mosaic genetic disease, using the example of McCune-Albright syndrome. Several French specialists in the field who have implemented these techniques in their laboratory have written these different examples of applications jointly. In summary, this manuscript offers an up-to-date view of the positioning of dPCR in relation to other existing technologies in order to best meet the expectations of precision medicine.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Pautas de la Práctica en Medicina , Medicina de Precisión , Femenino , Displasia Fibrosa Poliostótica/diagnóstico , Displasia Fibrosa Poliostótica/genética , Displasia Fibrosa Poliostótica/terapia , Trasplante de Células Madre Hematopoyéticas , Humanos , Técnicas de Diagnóstico Molecular/estadística & datos numéricos , Técnicas de Diagnóstico Molecular/tendencias , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Reacción en Cadena de la Polimerasa/estadística & datos numéricos , Reacción en Cadena de la Polimerasa/tendencias , Pautas de la Práctica en Medicina/estadística & datos numéricos , Pautas de la Práctica en Medicina/tendencias , Medicina de Precisión/métodos , Medicina de Precisión/estadística & datos numéricos , Medicina de Precisión/tendencias , Embarazo , Diagnóstico Prenatal/métodos
17.
Eur J Hum Genet ; 27(3): 349-352, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30552423

RESUMEN

Next-generation sequencing (NGS) gene-panel-based analyses constitute diagnosis strategies which are adapted to the genetic heterogeneity within the field of myopathies, including more than 200 implicated genes to date. Nonetheless, important inter-laboratory diversity of gene panels exists at national and international levels, complicating the exchange of data and the visibility of the diagnostic offers available for referring neurologists. To address this issue, we here describe the initiative of the genetic diagnosis section of the French National Network for Rare Neuromuscular Diseases (Filière Nationale des Maladies Rares Neuromusculaires, FILNEMUS), which led to set up a consensual nationwide diagnostic strategy among the nine French genetic diagnosis laboratories using NGS for myopathies. The strategy is based on the determination of 13 clinical and/or histological entry-diagnosis groups, and consists for each group either in a successive NGS analysis of a "core gene list" followed in case of a negative result by the analysis of an "exhaustive gene list", or in the NGS analysis of a "unique exhaustive gene list".


Asunto(s)
Consenso , Pruebas Genéticas/normas , Enfermedades Neuromusculares/genética , Guías de Práctica Clínica como Asunto , Análisis de Secuencia de ADN/normas , Francia , Pruebas Genéticas/métodos , Humanos , Enfermedades Neuromusculares/diagnóstico , Análisis de Secuencia de ADN/métodos , Sociedades Médicas
18.
J Neuropathol Exp Neurol ; 77(12): 1101-1114, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30365001

RESUMEN

Titin-related myopathies are heterogeneous clinical conditions associated with mutations in TTN. To define their histopathologic boundaries and try to overcome the difficulty in assessing the pathogenic role of TTN variants, we performed a thorough morphological skeletal muscle analysis including light and electron microscopy in 23 patients with different clinical phenotypes presenting pathogenic autosomal dominant or autosomal recessive (AR) mutations located in different TTN domains. We identified a consistent pattern characterized by diverse defects in oxidative staining with prominent nuclear internalization in congenital phenotypes (AR-CM) (n = 10), ± necrotic/regenerative fibers, associated with endomysial fibrosis and rimmed vacuoles (RVs) in AR early-onset Emery-Dreifuss-like (AR-ED) (n = 4) and AR adult-onset distal myopathies (n = 4), and cytoplasmic bodies (CBs) as predominant finding in hereditary myopathy with early respiratory failure (HMERF) patients (n = 5). Ultrastructurally, the most significant abnormalities, particularly in AR-CM, were multiple narrow core lesions and/or clear small areas of disorganizations affecting one or a few sarcomeres with M-band and sometimes A-band disruption and loss of thick filaments. CBs were noted in some AR-CM and associated with RVs in HMERF and some AR-ED cases. As a whole, we described recognizable histopathological patterns and structural alterations that could point toward considering the pathogenicity of TTN mutations.


Asunto(s)
Conectina/genética , Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Sarcómeros/genética , Sarcómeros/patología , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Músculo Esquelético/ultraestructura , Estudios Retrospectivos , Adulto Joven
19.
Ann Biol Clin (Paris) ; 76(5): 505-523, 2018 10 01.
Artículo en Francés | MEDLINE | ID: mdl-30226193

RESUMEN

Digital PCR (dPCR) is a 3rd generation technology that complements traditional end-point PCR and real-time PCR. It was developed to overcome certain limitations of conventional amplification techniques, in particular for the detection of small amounts of nucleic acids and/or rare variants. This technology is in a full swing because of its high sensitivity and major applications in various domains such as oncology, transplantation or non-invasive prenatal testing. Consequently, PCRd also has great interest in many areas of medical biology, particularly for clinical applications aiming at detecting and quantifying specific genetic or epigenetic alterations of nucleic acids, even with specimens containing very low concentration of the nucleic acids of interest (e.g. liquid biopsies). However, this technique requires a good training of users and compliance with certain precautions. A lack in such a knowledge can lead to many errors in the conduct of the experiment and the interpretation of the results. In this review, we present the context in which this technology has emerged by describing in particular its principle and the main factors that can influence the quality of the analysis. Then, we propose a number of practical recommendations for the implementation of a test based on dPCR in clinical laboratories with an eye on quality requirements.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Técnicas de Laboratorio Clínico/normas , Femenino , Humanos , Técnicas de Diagnóstico Molecular/normas , Reacción en Cadena de la Polimerasa/normas , Guías de Práctica Clínica como Asunto , Embarazo , Diagnóstico Prenatal/métodos , Diagnóstico Prenatal/normas , Reacción en Cadena en Tiempo Real de la Polimerasa , Procesamiento de Señales Asistido por Computador
20.
Clin Chem Lab Med ; 56(5): 728-738, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29613853

RESUMEN

BACKGROUND: To limit risks of miscarriages associated with invasive procedures of current prenatal diagnosis practice, we aim to develop a personalized medicine-based protocol for non-invasive prenatal diagnosis (NIPD) of monogenic disorders relying on the detection of paternally inherited mutations in maternal blood using droplet digital PCR (ddPCR). METHODS: This study included four couples at risk of transmitting paternal neurofibromatosis type 1 (NF1) mutations and four couples at risk of transmitting compound heterozygous CFTR mutations. NIPD was performed between 8 and 15 weeks of gestation, in parallel to conventional invasive diagnosis. We designed specific hydrolysis probes to detect the paternal mutation and to assess the presence of cell-free fetal DNA by ddPCR. Analytical performances of each assay were determined from paternal sample, an then fetal genotype was inferred from maternal plasma sample. RESULTS: Presence or absence of the paternal mutant allele was correctly determined in all the studied plasma DNA samples. CONCLUSIONS: We report an NIPD protocol suitable for implementation in an experienced laboratory of molecular genetics. Our proof-of-principle results point out a high accuracy for early detection of paternal NF1 and CFTR mutations in cell-free DNA, and open new perspectives for extending the technology to NIPD of many other monogenic diseases.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación , Trastornos del Neurodesarrollo/diagnóstico , Neurofibromatosis 1/genética , Reacción en Cadena de la Polimerasa , Diagnóstico Prenatal , Femenino , Genotipo , Humanos , Masculino , Trastornos del Neurodesarrollo/sangre , Trastornos del Neurodesarrollo/genética , Neurofibromatosis 1/sangre , Neurofibromatosis 1/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...