Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 298: 63-73, 2019 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-30925357

RESUMEN

Moderate intensity Pulsed Electric Fields (PEF) was studied for microbial inactivation as an alternative to high intensity PEF or to classical thermal pasteurization. The process is characterized by the application of electric pulses, allowing an increase of the product temperature by the ohmic heat generated by the pulses. A systematic evaluation of the effect of parameters electric field strength (E) and pulse width (τ) on the inactivation of Escherichia coli, Listeria monocytogenes, Lactobacillus plantarum, Salmonella Senftenberg and Saccharomyces cerevisiae in orange juice was carried out in a continuous flow system. A wide range of conditions was evaluated, and both E and τ were shown to be important in the efficacy to inactivate micro-organisms. Remarkably, PEF conditions at E = 2.7 kV/cm and τ = 15-1000 µs showed to be more effective in microbial inactivation than at E = 10 kV/cm and τ = 2 µs. Inactivation kinetics of the tested PEF conditions were compared to an equivalent thermal process to disentangle non-thermal effects (electroporation) from thermal effects responsible for the microbial inactivation. At standard high intensity PEF treatment a non-thermal inactivation at E = 20 kV/cm and τ = 2 µs pulses was observed and attributed to electroporation. Non-thermal effects could also be resolved with moderate intensity PEF at E = 2.7 kV/cm and pulse width between τ = 15-1000 µs. Microbial inactivation at these moderate intensity PEF conditions was studied in more detail at different pH and medium conductivity for E. coli and L. monocytogenes in watermelon juice and coconut water. Under moderate intensity PEF conditions the effectiveness of treatment was independent of pH for all evaluated matrices in the pH range of 3.8-6.0, whereas under high intensity PEF conditions the pH of the product is a critical factor for microbial inactivation. This suggests that the inactivation proceeds through a different mechanism at moderate intensity PEF, and speculations for this mechanism are presented. In conclusion, moderate intensity PEF conditions at E = 2.7 kV/cm and pulse width of 15-1000 µs has potential for industrial processing for the preservation of fruit juices and pH neutral liquid food products.


Asunto(s)
Electricidad , Microbiología de Alimentos , Conservación de Alimentos/métodos , Jugos de Frutas y Vegetales , Viabilidad Microbiana , Fenómenos Fisiológicos Bacterianos , Recuento de Colonia Microbiana , Calor , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/fisiología
2.
Int J Food Microbiol ; 230: 21-30, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27116618

RESUMEN

Pulsed electrical field (PEF) technology offers an alternative to thermal pasteurisation of high-acid fruit juices, by extending the shelf life of food products, while retaining its fresh taste and nutritional value. Substantial research has been performed on the effect of electrical field strength on the inactivation kinetics of spoilage and pathogenic micro-organisms and on the outgrowth of spoilage micro-organisms during shelf life. However, studies on the effect of electrical field strength on the inactivation and outgrowth of surviving populations during shelf life are missing. In this study, we assessed the influence of electrical field strength applied by PEF processing and storage temperature on the outgrowth of surviving yeast and mould populations naturally present in fresh fruit smoothie in time. Therefore, an apple-strawberry-banana smoothie was treated in a continuous-flow PEF system (130L/h), using similar inlet and outlet conditions (preheating temperature 41°C, maximum temperature 58°C) to assure that the amount of energy across the different conditions was kept constant. Smoothies treated with variable electrical field strengths (13.5, 17.0, 20.0 and 24.0kV/cm) were compared to smoothies without treatment for outgrowth of yeasts and moulds. Outgrowth of yeasts and moulds stored at 4°C and 7°C was analysed by plating and visual observation and yeast growth was modelled using the modified logistic growth model (Zwietering model). Results showed that the intensity of the electrical field strength had an influence on the degree of inactivation of yeast cells, resulting in a faster outgrowth over time at lower electrical field strength. Outgrowth of moulds over time was not affected by the intensity of the electrical field strength used. Application of PEF introduces a trade-off between type of spoilage: in untreated smoothie yeasts lead to spoilage after 8days when stored at 4 or 7°C, whereas in PEF treated smoothie yeasts were (partly) inactivated and provided outgrowth opportunities for moulds, which led to spoilage by moulds after 14days (7°C) or 18days (4°C).


Asunto(s)
Conservación de Alimentos/métodos , Fragaria/microbiología , Frutas/microbiología , Malus/microbiología , Musa/microbiología , Levaduras/crecimiento & desarrollo , Electricidad , Jugos de Frutas y Vegetales/microbiología , Pasteurización/métodos , Temperatura
3.
Int J Food Microbiol ; 173: 105-11, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24418831

RESUMEN

Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the quality. In this study, pathogenic and spoilage micro-organisms relevant in refrigerated fruit juices were studied to determine the impact of process parameters and juice composition on the effectiveness of the PEF process to inactivate the micro-organisms. Experiments were performed using a continuous-flow PEF system at an electrical field strength of 20 kV/cm with variable frequencies to evaluate the inactivation of Salmonella Panama, Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae in apple, orange and watermelon juices. Kinetic data showed that under the same conditions, S. cerevisiae was the most sensitive micro-organism, followed by S. Panama and E. coli, which displayed comparable inactivation kinetics. L. monocytogenes was the most resistant micro-organism towards the treatment conditions tested. A synergistic effect between temperature and electric pulses was observed at inlet temperatures above 35 °C, hence less energy for inactivation was required at higher temperatures. Different juice matrices resulted in a different degree of inactivation, predominantly determined by pH. The survival curves were nonlinear and could satisfactorily be modeled with the Weibull model.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Bebidas/microbiología , Saccharomyces cerevisiae/fisiología , Temperatura , Bacterias/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/fisiología , Frutas/microbiología , Concentración de Iones de Hidrógeno , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/genética , Salmonella/crecimiento & desarrollo , Salmonella/fisiología , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA