Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosci Rep ; 44(1)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38108122

RESUMEN

Human glutamate carboxypeptidase 2 (GCP2) from the M28B metalloprotease group is an important target for therapy in neurological disorders and an established tumor marker. However, its physiological functions remain unclear. To better understand general roles, we used the model organism Caenorhabditis elegans to genetically manipulate its three existing orthologous genes and evaluate the impact on worm physiology. The results of gene knockout studies showed that C. elegans GCP2 orthologs affect the pharyngeal physiology, reproduction, and structural integrity of the organism. Promoter-driven GFP expression revealed distinct localization for each of the three gene paralogs, with gcp-2.1 being most abundant in muscles, intestine, and pharyngeal interneurons, gcp-2.2 restricted to the phasmid neurons, and gcp-2.3 located in the excretory cell. The present study provides new insight into the unique phenotypic effects of GCP2 gene knockouts in C. elegans, and the specific tissue localizations. We believe that elucidation of particular roles in a non-mammalian organism can help to explain important questions linked to physiology of this protease group and in extension to human GCP2 involvement in pathophysiological processes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/genética , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
Biomolecules ; 13(9)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37759676

RESUMEN

Genome sequencing of the human parasite Schistosoma mansoni revealed an interesting gene superfamily, called micro-exon gene (meg), that encodes secreted MEG proteins. The genes are composed of short exons (3-81 base pairs) regularly interspersed with long introns (up to 5 kbp). This article recollects 35 S. mansoni specific meg genes that are distributed over 7 autosomes and one pair of sex chromosomes and that code for at least 87 verified MEG proteins. We used various bioinformatics tools to produce an optimal alignment and propose a phylogenetic analysis. This work highlighted intriguing conserved patterns/motifs in the sequences of the highly variable MEG proteins. Based on the analyses, we were able to classify the verified MEG proteins into two subfamilies and to hypothesize their duplication and colonization of all the chromosomes. Together with motif identification, we also proposed to revisit MEGs' common names and annotation in order to avoid duplication, to help the reproducibility of research results and to avoid possible misunderstandings.


Asunto(s)
Schistosoma mansoni , Humanos , Animales , Schistosoma mansoni/genética , Filogenia , Reproducibilidad de los Resultados , Exones/genética , Mapeo Cromosómico
3.
PLoS One ; 18(8): e0289444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535563

RESUMEN

Micro-Exon Genes are a widespread class of genes known for their high variability, widespread in the genome of parasitic trematodes such as Schistosoma mansoni. In this study, we present a strategy that allowed us to solve the structures of three alternatively spliced isoforms from the Schistoma mansoni MEG 2.1 family for the first time. All isoforms are hydrophobic, intrinsically disordered, and recalcitrant to be expressed in high yield in heterologous hosts. We resorted to the chemical synthesis of shorter pieces, before reconstructing the entire sequence. Here, we show that isoform 1 partially folds in a-helix in the presence of trifluoroethanol while isoform 2 features two rigid elbows, that maintain the peptide as disordered, preventing any structuring. Finally, isoform 3 is dominated by the signal peptide, which folds into a-helix. We demonstrated that combining biophysical techniques, like circular dichroism and nuclear magnetic resonance at natural abundance, with in silico molecular dynamics simulation for isoform 1 only, was the key to solve the structure of MEG 2.1. Our results provide a crucial piece to the puzzle of this elusive and highly variable class of proteins.


Asunto(s)
Péptidos , Schistosoma mansoni , Animales , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Isoformas de Proteínas/genética , Exones/genética , Péptidos/metabolismo
4.
Curr Res Immunol ; 3: 199-214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032416

RESUMEN

In this review, the disease and immunogenicity affected by COVID-19 vaccination at the metabolic level are described considering the use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of different biological samples. Consistently, we explain how different biomarkers can be examined in the saliva, blood plasma/serum, bronchoalveolar-lavage fluid (BALF), semen, feces, urine, cerebrospinal fluid (CSF) and breast milk. For example, the proposed approach for the given samples can allow one to detect molecular biomarkers that can be relevant to disease and/or vaccine interference in a system metabolome. The analysis of the given biomaterials by NMR often produces complex chemical data which can be elucidated by multivariate statistical tools, such as PCA and PLS-DA/OPLS-DA methods. Moreover, this approach may aid to improve strategies that can be helpful in disease control and treatment management in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...