Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 184(10): 2649-2664.e18, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33848463

RESUMEN

Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.


Asunto(s)
Condensados Biomoleculares/metabolismo , Gránulos Citoplasmáticos/metabolismo , Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Activación Enzimática , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Células HEK293 , Humanos , Proteína SOS1/metabolismo , Transducción de Señal
2.
Mol Cell ; 73(1): 61-72.e3, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472189

RESUMEN

Recent studies have indicated that nucleosome turnover is rapid, occurring several times per cell cycle. To access the effect of nucleosome turnover on the epigenetic landscape, we investigated H3K79 methylation, which is produced by a single methyltransferase (Dot1l) with no known demethylase. Using chemical-induced proximity (CIP), we find that the valency of H3K79 methylation (mono-, di-, and tri-) is determined by nucleosome turnover rates. Furthermore, propagation of this mark is predicted by nucleosome turnover simulations over the genome and accounts for the asymmetric distribution of H3K79me toward the transcriptional unit. More broadly, a meta-analysis of other conserved histone modifications demonstrates that nucleosome turnover models predict both valency and chromosomal propagation of methylation marks. Based on data from worms, flies, and mice, we propose that the turnover of modified nucleosomes is a general means of propagation of epigenetic marks and a determinant of methylation valence.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Genoma , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ensamble y Desensamble de Cromatina , Simulación por Computador , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Histonas/genética , Humanos , Células Jurkat , Cinética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Modelos Genéticos , Método de Montecarlo , Nucleosomas/genética
3.
Cancer Res ; 79(3): 546-556, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538120

RESUMEN

Chromosomal rearrangements involving receptor tyrosine kinases (RTK) are a clinically relevant oncogenic mechanism in human cancers. These chimeric oncoproteins often contain the C-terminal kinase domain of the RTK joined in cis to various N-terminal, nonkinase fusion partners. The functional role of the N-terminal fusion partner in RTK fusion oncoproteins is poorly understood. Here, we show that distinct N-terminal fusion partners drive differential subcellular localization, which imparts distinct cell signaling and oncogenic properties of different, clinically relevant ROS1 RTK fusion oncoproteins. SDC4-ROS1 and SLC34A2-ROS1 fusion oncoproteins resided on endosomes and activated the MAPK pathway. CD74-ROS1 variants that localized instead to the endoplasmic reticulum (ER) showed compromised activation of MAPK. Forced relocalization of CD74-ROS1 from the ER to endosomes restored MAPK signaling. ROS1 fusion oncoproteins that better activate MAPK formed more aggressive tumors. Thus, differential subcellular localization controlled by the N-terminal fusion partner regulates the oncogenic mechanisms and output of certain RTK fusion oncoproteins. SIGNIFICANCE: ROS1 fusion oncoproteins exhibit differential activation of MAPK signaling according to subcellular localization, with ROS1 fusions localized to endosomes, the strongest activators of MAPK signaling.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Endosomas/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células 3T3 NIH , Proteínas de Fusión Oncogénica/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Fracciones Subcelulares/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-29152593

RESUMEN

The advent of genomics has led to the identification of specific "driver" mutations in oncogenic kinases, and the development of targeted small molecule inhibitors to block their tumor-driving functions. These specific inhibitors have been a clinical success, and often significantly prolong the lives of individuals with cancer. Inevitably, however, the treated tumors recur as resistance to these targeted therapies develops. Here, we review the major mechanisms by which a cancer cell can evade targeted therapy, focusing on mechanisms of resistance to kinase inhibitors in lung cancer. We discuss the promising concept of rational upfront polytherapy in lung cancer, which involves concurrently targeting multiple proteins in critical signaling pathways in a cancer cell to prevent or delay resistance.

5.
Nat Med ; 21(9): 1038-47, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26301689

RESUMEN

One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS-mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRAS(WT)) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK-positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteínas de Fusión Oncogénica/fisiología , Proteínas ras/fisiología , Quinasa de Linfoma Anaplásico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Fosfatasa 6 de Especificidad Dual/fisiología , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/análisis , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas ras/genética
6.
Cell Rep ; 11(1): 98-110, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25843712

RESUMEN

Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR mutant lung adenocarcinoma, we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses.


Asunto(s)
Adenocarcinoma/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , FN-kappa B/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclohexanonas/administración & dosificación , Compuestos Epoxi/administración & dosificación , Receptores ErbB/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , FN-kappa B/antagonistas & inhibidores , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo
7.
Clin Cancer Res ; 19(1): 3-5, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23172883

RESUMEN

Non-small cell lung carcinoma (NSCLC) metastasis and drug resistance has been associated with epithelial-to-mesenchymal transition (EMT). This study reports the development of a robust gene expression signature of EMT in NSCLC and reveals new insights into the key molecular events that underlie EMT and drug resistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Humanos , Tirosina Quinasa del Receptor Axl
8.
Cell ; 149(7): 1447-60, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22704655

RESUMEN

Posttranslational histone modifications are important for gene regulation, yet the mode of propagation and the contribution to heritable gene expression states remains controversial. To address these questions, we developed a chromatin in vivo assay (CiA) system employing chemically induced proximity to initiate and terminate chromatin modifications in living cells. We selectively recruited HP1α to induce H3K9me3-dependent gene silencing and describe the kinetics and extent of chromatin modifications at the Oct4 locus in fibroblasts and pluripotent cells. H3K9me3 propagated symmetrically and continuously at average rates of ~0.18 nucleosomes/hr to produce domains of up to 10 kb. After removal of the HP1α stimulus, heterochromatic domains were heritably transmitted, undiminished through multiple cell generations. Our data enabled quantitative modeling of reaction kinetics, which revealed that dynamic competition between histone marking and turnover, determines the boundaries and stability of H3K9me3 domains. This framework predicts the steady-state dynamics and spatial features of the majority of euchromatic H3K9me3 domains over the genome.


Asunto(s)
Epigenómica , Heterocromatina/metabolismo , Código de Histonas , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias , Fibroblastos/metabolismo , Histonas/metabolismo , Cinética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...