Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Remote Sens Ecol Conserv ; 8(5): 698-716, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36588588

RESUMEN

Contemporary analyses of insect population trends are based, for the most part, on a large body of heterogeneous and short-term datasets of diurnal species that are representative of limited spatial domains. This makes monitoring changes in insect biomass and biodiversity difficult. What is needed is a method for monitoring that provides a consistent, high-resolution picture of insect populations through time over large areas during day and night. Here, we explore the use of X-band weather surveillance radar (WSR) for the study of local insect populations using a high-quality, multi-week time series of nocturnal moth light trapping data. Specifically, we test the hypotheses that (i) unsupervised data-driven classification algorithms can differentiate meteorological and biological phenomena, (ii) the diversity of the classes of bioscatterers are quantitatively related to the diversity of insects as measured on the ground and (iii) insect abundance measured at ground level can be predicted quantitatively based on dual-polarization Doppler WSR variables. Adapting the quasi-vertical profile analysis method and data clustering techniques developed for the analysis of hydrometeors, we demonstrate that our bioscatterer classification algorithm successfully differentiates bioscatterers from hydrometeors over a large spatial scale and at high temporal resolutions. Furthermore, our results also show a clear relationship between biological and meteorological scatterers and a link between the abundance and diversity of radar-based bioscatterer clusters and that of nocturnal aerial insects. Thus, we demonstrate the potential utility of this approach for landscape scale monitoring of biodiversity.

2.
Science ; 353(6296): 269-74, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27365314

RESUMEN

Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or "healing") is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.


Asunto(s)
Clorofluorocarburos/química , Pérdida de Ozono , Erupciones Volcánicas , Regiones Antárticas , Modelos Teóricos , Estaciones del Año
3.
Geophys Res Lett ; 42(7): 2540-2546, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-26709320

RESUMEN

Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. KEY POINTS: The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010.

4.
J Adv Model Earth Syst ; 7(2): 865-914, 2015 06.
Artículo en Inglés | MEDLINE | ID: mdl-27668039

RESUMEN

A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size-resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1-CARMA is approximately ∼2.6 times as much computer time as the standard three-mode aerosol model in CESM1 (CESM1-MAM3) and twice as much computer time as the seven-mode aerosol model in CESM1 (CESM1-MAM7) using similar gas phase chemistry codes. Aerosol spatial-temporal distributions are simulated and compared with a large set of observations from satellites, ground-based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA