Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Rep ; 9(1): 793, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692599

RESUMEN

Identifying diseases displaying chronic low plasma Coenzyme Q10 (CoQ) values may be important to prevent possible cardiovascular dysfunction. The aim of this study was to retrospectively evaluate plasma CoQ concentrations in a large cohort of pediatric and young adult patients. We evaluated plasma CoQ values in 597 individuals (age range 1 month to 43 years, average 11 years), studied during the period 2005-2016. Patients were classified into 6 different groups: control group of healthy participants, phenylketonuric patients (PKU), patients with mucopolysaccharidoses (MPS), patients with other inborn errors of metabolism (IEM), patients with neurogenetic diseases, and individuals with neurological diseases with no genetic diagnosis. Plasma total CoQ was measured by reverse-phase high-performance liquid chromatography with electrochemical detection and ultraviolet detection at 275 nm. ANOVA with Bonferroni correction showed that plasma CoQ values were significantly lower in the PKU and MPS groups than in controls and neurological patients. The IEM group showed intermediate values that were not significantly different from those of the controls. In PKU patients, the Chi-Square test showed a significant association between having low plasma CoQ values and being classic PKU patients. The percentage of neurogenetic and other neurological patients with low CoQ values was low (below 8%). In conclusión, plasma CoQ monitoring in selected groups of patients with different IEM (especially in PKU and MPS patients, but also in IEM under protein-restricted diets) seems advisable to prevent the possibility of a chronic blood CoQ suboptimal status in such groups of patients.


Asunto(s)
Errores Innatos del Metabolismo/genética , Mucopolisacaridosis/genética , Enfermedades del Sistema Nervioso/sangre , Fenilcetonurias/genética , Ubiquinona/análogos & derivados , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Errores Innatos del Metabolismo/sangre , Mucopolisacaridosis/sangre , Mutación , Enfermedades del Sistema Nervioso/genética , Fenilcetonurias/sangre , Estudios Retrospectivos , Análisis de Secuencia de ADN , Ubiquinona/sangre , Adulto Joven
2.
Mitochondrion ; 34: 103-114, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28263872

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene. We show increased oxidative stress, abnormalities in the antioxidant system, changes in complexes involved in oxidative phosphorylation and changes in mitochondrial morphology in SCA2 patient fibroblasts compared to controls, and we show that treatment with CoQ10 can partially reverse these changes. Together, our results suggest that oxidative stress and mitochondrial dysfunction may be contributory factors to the pathophysiology of SCA2 and that therapeutic strategies involving manipulation of the antioxidant system could prove to be of clinical benefit.


Asunto(s)
Fibroblastos/patología , Mitocondrias/patología , Estrés Oxidativo , Ataxias Espinocerebelosas/patología , Ubiquinona/análogos & derivados , Vitaminas/metabolismo , Adolescente , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ubiquinona/metabolismo , Adulto Joven
3.
Clin Sci (Lond) ; 131(8): 747-758, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28202686

RESUMEN

Statins may offer protective effects in sepsis through anti-inflammatory, mitochondrial protection and other actions. We thus evaluated the effects of simvastatin on survival, organ and mitochondrial function, tissue and plasma ubiquinone levels and liver transcriptomics in a 3-day rat model of sepsis. Comparisons of rat plasma simvastatin and ubiquinone levels were made against levels sampled in blood from patients with acute lung injury (ALI) enrolled into a trial of statin therapy. Animals received simvastatin by gavage either pre- or post-induction of faecal peritonitis. Control septic animals received vehicle alone. Seventy-two-hour survival was significantly greater in statin pre-treated animals (43.7%) compared with their statin post-treated (12.5%) and control septic (25%) counterparts (P<0.05). Sepsis-induced biochemical derangements in liver and kidney improved with statin therapy, particularly when given pre-insult. Both simvastatin pre- and post-treatment prevented the fall in mitochondrial oxygen consumption in muscle fibres taken from septic animals at 24 h. This beneficial effect was paralleled by recovery of genes related to fatty acid metabolism. Simvastatin pre-treatment resulted in a significant decrease in myocardial ubiquinone. Patients with ALI had a marked variation in plasma simvastatin acid levels; however, their ubiquinone/low-density lipoprotein (LDL) cholesterol ratio did not differ regardless of whether they were receiving statin or placebo. In summary, despite protective effects seen with statin treatment given both pre- and post-insult, survival benefit was only seen with pre-treatment, reflecting experiences in patient studies.


Asunto(s)
Fluidoterapia/métodos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Sepsis/prevención & control , Simvastatina/uso terapéutico , Animales , LDL-Colesterol/sangre , Terapia Combinada , Citocinas/sangre , Evaluación Preclínica de Medicamentos/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/sangre , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Estimación de Kaplan-Meier , Hígado/metabolismo , Masculino , Mitocondrias/metabolismo , Músculo Esquelético/enzimología , Miocardio/enzimología , Consumo de Oxígeno/efectos de los fármacos , Ratas Wistar , Sepsis/metabolismo , Simvastatina/sangre , Simvastatina/farmacología , Técnicas de Cultivo de Tejidos , Ubiquinona/metabolismo
4.
J. inborn errors metab. screen ; 5: e160063, 2017. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1090938

RESUMEN

Abstract Currently, there is a paucity of available treatment strategies for oxidative phosphorylation disorders. Coenzyme Q10 (CoQ10) and related synthetic quinones are the only agents to date that have proven to be beneficial in the treatment of these heterogeneous disorders. The therapeutic efficacy of CoQ10 is not restricted to patients with an underlying CoQ10 deficiency and is thought to result from its ability to restore electron flow in the mitochondrial respiratory chain (MRC) as well as to increase the cellular antioxidant capacity. At present, however, there is no consensus on the appropriate dosage or therapeutic plasma level of CoQ10, and this information will be required before CoQ10 can be utilized effectively in the treatment of mitochondrial disease. The following review will outline our current knowledge on the use of CoQ10 in the treatment of MRC disorders and primary CoQ10 deficiencies.

5.
Dis Model Mech ; 9(10): 1221-1229, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27585884

RESUMEN

'Developmental programming', which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed 'recuperated') in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1ß (IL1ß) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations.


Asunto(s)
Envejecimiento/fisiología , Crecimiento y Desarrollo , Fenómenos Fisiologicos Nutricionales Maternos , Músculo Esquelético/patología , Estrés Oxidativo , Animales , Antioxidantes , Biomarcadores/metabolismo , Daño del ADN , Dieta , Femenino , Inflamación/patología , Masculino , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Oxidantes/metabolismo , Fenotipo , Ratas Wistar , Acortamiento del Telómero
6.
Mitochondrion ; 30: 51-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27374853

RESUMEN

We evaluated the coenzyme Q10 (CoQ) levels in patients who were diagnosed with mitochondrial oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders (n=72). Data from the 72 cases in this study revealed that 44.4% of patients showed low CoQ concentrations in either their skeletal muscle or skin fibroblasts. Our findings suggest that secondary CoQ deficiency is a common finding in OXPHOS and non-OXPHOS disorders. We hypothesize that cases of CoQ deficiency associated with OXPHOS defects could be an adaptive mechanism to maintain a balanced OXPHOS, although the mechanisms explaining these deficiencies and the pathophysiological role of secondary CoQ deficiency deserves further investigation.


Asunto(s)
Enfermedades Mitocondriales/patología , Fosforilación Oxidativa , Ubiquinona/análogos & derivados , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Músculos/patología , Prevalencia , Piel/patología , Ubiquinona/deficiencia , Adulto Joven
7.
PLoS One ; 11(2): e0149557, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26894433

RESUMEN

BACKGROUND: The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases. METHODS: Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson's disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography. RESULTS: We detected a statistically significant decrease (by 3-5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson's disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)]. CONCLUSION: Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.


Asunto(s)
Cerebelo/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Ubiquinona/metabolismo , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/metabolismo
8.
Am J Clin Nutr ; 103(2): 579-88, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26718412

RESUMEN

BACKGROUND: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. OBJECTIVES: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. DESIGN: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed "recuperated"). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase-polymerase chain reaction. RESULTS: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 µm) than in controls (5 ± 0.5 µm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 µg/mL per µg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). CONCLUSIONS: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Suplementos Dietéticos , Retardo del Crecimiento Fetal/dietoterapia , Hepatitis/prevención & control , Cirrosis Hepática/prevención & control , Estrés Oxidativo , Ubiquinona/análogos & derivados , Animales , Citocinas/antagonistas & inhibidores , Citocinas/sangre , Citocinas/metabolismo , Dieta con Restricción de Proteínas/efectos adversos , Femenino , Desarrollo Fetal , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/inmunología , Retardo del Crecimiento Fetal/fisiopatología , Hepatitis/etiología , Hepatitis/metabolismo , Hepatitis/patología , Hiperinsulinismo/etiología , Hiperinsulinismo/prevención & control , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Desnutrición/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Complicaciones del Embarazo/fisiopatología , Ratas Wistar , Organismos Libres de Patógenos Específicos , Ubiquinona/uso terapéutico , Destete
9.
JIMD Rep ; 25: 1-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26205433

RESUMEN

Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by deficiencies of lysosomal enzymes catalyzing degradation of glycosaminoglycans (GAGs). Previously, we reported a secondary plasma coenzyme Q10 (CoQ) deficiency in MPS patients. For this study, nine MPS patients were recruited in the Hospital Sant Joan de Déu (HSJD, Barcelona) and two patients in the Neurometabolic Unit, National Hospital (NMU, London), to explore the nutritional status of MPS type III patients by analyzing several vitamins and micronutrients in blood and in cerebrospinal fluid. Plasma CoQ and plasma and cerebrospinal fluid pyridoxal phosphate (PLP) content were analyzed by high-pressure liquid chromatography (HPLC) with electrochemical and fluorescence detection, respectively. We found that most MPS-III patients disclosed low plasma pyridoxal phosphate (PLP) values (seven out of nine) and also low plasma CoQ concentrations (eight out of nine). We observed significantly lower median values of PLP, tocopherol, and CoQ (Mann-Whitney U test, p = 0.006, p = 0.004, and p = 0.001, respectively) in MPS patients when compared with age-matched controls. Chi-square test showed a significant association between the fact of having low plasma PLP and CoQ values in the whole cohort of patients. Cerebrospinal fluid PLP values were clearly deficient in the two patients studied. In conclusion, we report a combined CoQ and PLP deficiency in MPS-III patients. These observations could be related to the complexity of the physiopathology of the disease. If our results are confirmed in larger series of patients, CoQ and PLP therapy could be trialed as coadjuvant therapy with the current MPS treatments.

10.
Biofactors ; 41(6): 424-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26768296

RESUMEN

Kidney dysfunction is being increasingly associated with mitochondrial diseases and coenzyme Q10 (CoQ) deficiency. The assessment of CoQ status requires the biochemical determination of CoQ in biological fluids and different cell types, but no methods have been developed as yet for the analysis of CoQ in excretory systems. The aim of this study was to standardize a new procedure for urinary CoQ determination and to establish reference values for a paediatric population. Urinary CoQ was analyzed by HPLC with electrochemical detection. Reference values (n = 43) were stratified into two age groups (2-10 years: range 24-109 nmol CoQ/gram of pellet protein; 11-17 years: range 43-139 nmol CoQ/gram of pellet protein). In conclusion, urinary CoQ analysis is a noninvasive, reliable, and reproducible method to determine urinary tract CoQ status.


Asunto(s)
Enfermedades Mitocondriales/orina , Insuficiencia Renal/orina , Ubiquinona/análogos & derivados , Adolescente , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Técnicas Electroquímicas , Femenino , Humanos , Masculino , Enfermedades Mitocondriales/patología , Insuficiencia Renal/patología , Ubiquinona/orina
11.
J Clin Invest ; 124(7): 3107-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24911152

RESUMEN

Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we analyzed a cohort of patients with atypical movement disorder and identified 2 DAT coding variants, DAT-Ile312Phe and a presumed de novo mutant DAT-Asp421Asn, in an adult male with early-onset parkinsonism and ADHD. According to DAT single-photon emission computed tomography (DAT-SPECT) scans and a fluoro-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine, and electrophysiological analyses identified a large cation leak that might further perturb dopaminergic neurotransmission. Our results link specific DAT missense mutations to neurodegenerative early-onset parkinsonism. Moreover, the neuropsychiatric comorbidity provides additional support for the idea that DAT missense mutations are an ADHD risk factor and suggests that complex DAT genotype and phenotype correlations contribute to different dopaminergic pathologies.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Adulto , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudios de Cohortes , Análisis Mutacional de ADN , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Femenino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Oocitos/metabolismo , Trastornos Parkinsonianos/complicaciones , Linaje , Tomografía de Emisión de Positrones , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Sodio/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Xenopus
12.
Neurochem Int ; 63(8): 750-5, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24140430

RESUMEN

Deficiency of 5-methyltetrahydrofolate (5-MTHF) in cerebrospinal fluid (CSF) is associated with a number of neurometabolic conditions including mitochondrial electron transport chain defects. Whilst failure of the active transport of 5-methyltetrahydrofolate (5-MTHF) into the CSF compartment has been proposed as a potential mechanism responsible for the 5-MTHF deficiency seen in mitochondrial disorders, it is becoming increasingly clear that other mechanisms are involved. Here, we have considered the role of oxidative stress as a contributing mechanism. Concerning, ascorbic acid (AA), we have established a CSF reference range (103-303µM) and demonstrated a significant positive correlation between 5-MTHF and AA. Furthermore, CSF itself was also shown to convey antioxidant properties towards 5-MTHF. However, this protection could be overcome by the introduction of a hydroxyl radical generating system. Using a neuronal model system, inhibition of mitochondrial complex I, by 58%, was associated with a 23% increase in superoxide generation and a significantly increased loss of 5-MTHF from the extracellular medium. Addition of AA (150µM) was able to prevent this increased 5-MTHF catabolism. We conclude that increased generation of reactive oxygen species and/or loss of CSF antioxidants are also factors to consider with regard to the development of a central 5-MTHF deficiency. Co-supplementation of AA together with appropriate folate replacement may be of therapeutic benefit.


Asunto(s)
Ácido Ascórbico/líquido cefalorraquídeo , Ácido Fólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tetrahidrofolatos/líquido cefalorraquídeo , Adolescente , Adulto , Línea Celular Tumoral , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Adulto Joven
13.
J Inherit Metab Dis ; 36(1): 139-45, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22576361

RESUMEN

Vitamin B(6) dependent seizure disorders are an important and treatable cause of childhood epilepsy. The molecular and biochemical basis for some of these disorders has only recently been elucidated and it is likely that inborn errors affecting other parts of this complex metabolic pathway are yet to be described. In man vitamin B(6) ingested from the diet exists as six different vitamers, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5'-phosphate (PLP), pyridoxamine 5'- phosphate (PMP) and pyridoxine 5'-phosphate (PNP). Its breakdown product, 4-pyridoxic acid (PA), is excreted in urine. Here we describe an analytical LC-MS/MS method to measure all vitameric B(6) forms in plasma and have subsequently applied this methodology to investigate children with vitamin B(6) responsive seizure disorders. We show that patients with inborn errors of B(6) metabolism such as pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency have characteristic B(6) profiles which allow them to be differentiated from each other and control populations, even when on treatment with B(6). Regardless of diagnosis, patients on treatment doses of pyridoxine hydrochloride and pyridoxal phosphate have markedly elevated levels of some vitameric forms (PLP, PL and PA). Such mega doses of B(6) treatment are known to be associated with neurotoxicity. This LC-MS/MS method will be a useful tool for treatment monitoring and may help further our understanding of mechanisms of neurotoxicity in patient groups.


Asunto(s)
Errores Innatos del Metabolismo/sangre , Vitamina B 6/sangre , Adolescente , Niño , Preescolar , Cromatografía Liquida/métodos , Epilepsia/sangre , Humanos , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/sangre , Piridoxina/sangre , Espectrometría de Masas en Tándem/métodos
14.
J Neurochem ; 114(1): 87-96, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20403077

RESUMEN

Pyridoxal 5'-phosphate, the active form of vitamin B(6), is an essential cofactor for multiple enzymes, including aromatic l-amino acid decarboxylase that catalyses the final stage in the production of the neurotransmitters dopamine and serotonin. In two patients with inherited disorders of vitamin B(6) metabolism, we observed reductions in plasma aromatic l-amino acid decarboxylase activity. In one patient, this change was related to an increase in K(m) for pyridoxal 5'-phosphate. Furthermore, pyridoxal 5'-phosphate-deficient human SH-SY5Y neuroblastoma cells were found to exhibit reduced levels of aromatic l-amino acid decarboxylase activity and protein but with no alteration in expression. Further reductions in activity and protein were observed with the addition of the vitamin B(6) antagonist 4-deoxypyridoxine, which also reduced aromatic l-amino acid decarboxylase mRNA levels. Neither pyridoxal 5'-phosphate deficiency nor the addition of 4-deoxypyridoxine affected aromatic l-amino acid decarboxylase stability over 8 h with protein synthesis inhibited. Increasing extracellular availability of pyridoxal 5'-phosphate was not found to have any significant effect on intracellular pyridoxal 5'-phosphate concentrations or on aromatic l-amino acid decarboxylase. These findings suggest that maintaining adequate pyridoxal 5'-phosphate availability may be important for optimal treatment of aromatic l-amino acid decarboxylase deficiency and l-dopa-responsive conditions.


Asunto(s)
Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Fosfato de Piridoxal/deficiencia , Deficiencia de Vitamina B 6/metabolismo , Descarboxilasas de Aminoácido-L-Aromático/deficiencia , Descarboxilasas de Aminoácido-L-Aromático/genética , Línea Celular Tumoral , Niño , Estabilidad de Enzimas , Humanos , Cinética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...