Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798534

RESUMEN

Importance: Development of new therapies in melanoma has increased survival, and as a result more patients are living to develop brain metastasis (BrM). Identifying patients at increased risk of BrM is therefore of significant public health importance. Objective: To determine whether history of atopy is associated with improved survival or reduced incidence of BrM in cutaneous melanoma. Design: A retrospective cohort study conducted from June 2022 to March 2024. Setting: Population-based in states with Surveillance, Epidemiology and End Results (SEER) supported cancer registries. Participants: Individuals (≥65 years) diagnosed with cutaneous melanoma between January 1, 2008 and December 31, 2017 that are participants in traditional Medicare. Exposures: Individuals were compared that had history of atopy (allergic rhinitis, atopic dermatitis, asthma, and/or allergic/atopic conjunctivitis) diagnosed prior to melanoma diagnosis, ascertained using ICD-9 or ICD-10 codes in Medicare claims. Main Outcomes and Measures: Primary endpoints were diagnosis with a BrM or death during the follow-up period. Associations between atopy and endpoints were assessed using cox proportional hazards models to estimate hazard ratios (HR) and p-values. Results: A total of 29,956 cutaneous melanoma cases were identified (median age 76, 60% male and 97% non-Hispanic White). Overall, 7.1% developed BrM during follow up. Among the 35% that had history of atopy, the most common condition was atopic dermatitis (19%). After adjustment for demographic and prognostic factors, atopy was associated with a 16% decrease in death (HR=0.84 [95%CI:0.80-0.87], p FDR <0.001). Among those with non-metastatic disease at time of diagnosis, atopy conferred a 15% decrease in cumulative incidence BrM (HR=0.85 [95%CI: 0.76-0.94], p FDR =0.006), with a 25% decrease associated with atopic dermatitis (HR=0.75 [95%CI:0.65-0.86], p FDR <0.001). Among those with metastatic disease at diagnosis (any metastatic site), only those who received immune checkpoint inhibitors had a survival benefit associated with atopy (HR=0.31, [95%CI:0.15-0.64], p=0.001 vs HR=1.41, [95%CI:0.87-2.27], p=0.165). Conclusions and Relevance: Atopy, particularly atopic dermatitis, was significantly associated with improved survival and decreased incidence of BrM. The improved survival associated with these conditions in the context of immunotherapy suggests that these conditions in the elderly may identify those with more robust immune function that may be more responsive to treatment. Key Points: Question: Does atopy affect outcomes in cutaneous melanoma? Findings: In a retrospective cohort study, elderly individuals with prior diagnosis of atopy had significant improved overall survival and decreased incidence of brain metastasis as compared to individuals without atopy. Meaning: History of atopy may identify a subgroup within melanoma cases that has improved response to treatment and a more robust immune system which decreases risk of metastasis to the brain.

2.
Neuro Oncol ; 26(Supplement_3): iii1-iii53, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709657

RESUMEN

Recent analyses have shown that, whereas cancer survival overall has been improving, it has not improved for adolescents and young adults ages 15-39 years (AYA). The clinical care of AYA with primary brain and other central nervous system (CNS) tumors (BT) is complicated by the fact that the histopathologies of such tumors in AYA differ from their histopathologies in either children (ages 0-14 years) or older adults (ages 40+ years). The present report, as an update to a 2016 publication from the Central Brain Tumor Registry of the United States and the American Brain Tumor Association, provides in-depth analyses of the epidemiology of primary BT in AYA in the United States and is the first to provide biomolecular marker-specific statistics and prevalence by histopathology for both primary malignant and non-malignant BT in AYA. Between 2016 and 2020, the annual average age-specific incidence rate (AASIR) of primary malignant and non-malignant BT in AYA was 12.00 per 100,000 population, an average of 12,848 newly diagnosed cases per year. During the same period, an average of 1,018 AYA deaths per year were caused by primary malignant BT, representing an annual average age-specific mortality rate of 0.96 per 100,000 population. When primary BT were categorized by histopathology, pituitary tumors were the most common (36.6%), with an AASIR of 4.34 per 100,000 population. Total incidence increased with age overall; when stratified by sex, the incidence was higher in females than males at all ages. Incidence rates for all primary BT combined and for non-malignant tumors only were highest for non-Hispanic American Indian/Alaska Native individuals, whereas malignant tumors were more frequent in non-Hispanic White individuals, compared with other racial/ethnic groups. On the basis of histopathology, the most common molecularly defined tumor was diffuse glioma (an AASIR of 1.51 per 100,000). Primary malignant BT are the second most common cause of cancer death in the AYA population. Incidence rates of primary BT overall, as well as specific histopathologies, vary significantly by age. Accordingly, an accurate statistical assessment of primary BT in the AYA population is vital for better understanding the impact of these tumors on the US population and to serve as a reference for afflicted individuals, for researchers investigating new therapies, and for clinicians treating these patients.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Sistema de Registros , Humanos , Adolescente , Adulto Joven , Estados Unidos/epidemiología , Masculino , Femenino , Adulto , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/patología , Neoplasias del Sistema Nervioso Central/epidemiología , Neoplasias del Sistema Nervioso Central/patología , Sistema de Registros/estadística & datos numéricos , Incidencia , Preescolar , Niño , Recién Nacido , Lactante
3.
J Neurooncol ; 168(1): 111-123, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38563855

RESUMEN

PURPOSE: Glioblastoma (GB) is the most common primary malignant brain tumor with the highest incidence occurring in older adults with a median age at diagnosis of 64 years old. While treatment often improves survival it brings toxicities and adverse events (AE). Here we identify sex differences in treatment patterns and AE in individuals ≥ 66 years at diagnosis with GB. METHODS: Using the SEER-Medicare dataset sex differences in adverse events were assessed using multivariable logistic regression performed to calculate the male/female odds ratio (M/F OR) and 95% confidence intervals [95% CI] of experiencing an AE adjusted for demographic variables and Elixhauser comorbidity score. RESULTS: Males with GB were more likely to receive standard of care (SOC; Surgery with concurrent radio-chemotherapy) [20%] compared to females [17%], whereas females were more likely to receive no treatment [26%] compared to males [21%]. Females with GB receiving SOC were more likely to develop gastrointestinal disorders (M/F OR = 0.76; 95% CI,0.64-0.91, p = 0.002) or blood and lymphatic system disorders (M/F OR = 0.79; 95% CI,0.66-0.95, p = 0.012). Males with GB receiving SOC were more likely to develop cardiac disorders (M/F OR = 1.21; 95% CI,1.02-1.44, p = 0.029) and renal disorders (M/F OR = 1.65; 95% CI,1.37-2.01, p < 0.001). CONCLUSIONS: Sex differences for individuals, 66 years and older, diagnosed with GB exist in treatment received and adverse events developed across different treatment modalities.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Medicare , Humanos , Masculino , Femenino , Anciano , Estados Unidos/epidemiología , Glioblastoma/terapia , Glioblastoma/epidemiología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/epidemiología , Anciano de 80 o más Años , Caracteres Sexuales , Factores Sexuales , Programa de VERF , Terapia Combinada/efectos adversos
4.
Neurooncol Pract ; 11(1): 5-25, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38222052

RESUMEN

Background: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention (CDC) and National Cancer Institute (NCI), is the largest aggregation of histopathology-specific population-based data for primary brain and other central nervous system (CNS) in the US. CBTRUS publishes an annual statistical report which provides critical reference data for the broad neuro-oncology community. Here, we summarize the key findings from the 2022 CBTRUS annual statistical report for healthcare providers. Methods: Incidence data were obtained from the CDC's National Program of Cancer Registries (NPCR) and NCI's Surveillance, Epidemiology, and End Results Program for 52 central cancer registries (CCRs). Survival data were obtained from 42 NPCR CCRs. All rates are per 100 000 and age-adjusted using the 2000 US standard population. Overall median survival was estimated using Kaplan-Meier models. Survival data for selected molecularly defined histopathologies are from the National Cancer Database. Mortality data are from the National Vital Statistics System. Results: The average annual age-adjusted incidence rate of all primary brain and other CNS tumors was 24.25/100 000. Incidence was higher in females and non-Hispanics. The most commonly occurring malignant and predominately non-malignant tumors was glioblastoma (14% of all primary brain tumors) and meningioma (39% of all primary brain tumors), respectively. Mortality rates and overall median survival varied by age, sex, and histopathology. Conclusions: This summary describes the most up-to-date population-based incidence, mortality, and survival, of primary brain and other CNS tumors in the US and aims to serve as a concise resource for neuro-oncology providers.

5.
Neuro Oncol ; 26(4): 764-774, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38167948

RESUMEN

BACKGROUND: To mitigate disease spread, restrictions implemented in the United States surrounding the COVID-19 pandemic created an environment that led to delays in cancer diagnosis. The data needed to accurately analyze the impact of the pandemic on brain and CNS tumor incidence has not been available until now. Utilizing incidence data from the Central Brain Tumor Registry of the United States (CBTRUS) we analyzed the impact of the COVID-19 pandemic on primary brain and other CNS tumor incidence for the first year of the pandemic. METHODS: Monthly age-adjusted incidence rates and incidence trends for 2019 and 2020 were determined for age at diagnosis, sex, race, ethnicity, diagnostic confirmation, behavior, tumor histopathology, and county-level urbanization. Monthly incidence rate ratios comparing 2020 and 2019 were evaluated for the same factors. RESULTS: Overall, there was a notable decrease in incidence rates in March-May 2020 when compared to 2019. These decreases were driven by nonmalignant tumors, with a 50% incidence decrease between March 2020 and 2019. Individuals who were Black had a larger incidence decrease in early 2020 than individuals who were White. Radiographically confirmed tumors saw larger incidence decreases than histologically confirmed tumors. There were no changes in monthly incidence of glioblastoma in 2020 compared to 2019. CONCLUSIONS: These data provide evidence that disruptions in medical care, such as governmental and health care mandates, in response to the COVID-19 pandemic resulted in an overall decreased incidence of primary brain tumors in early 2020.


Asunto(s)
COVID-19 , Neoplasias del Sistema Nervioso Central , Humanos , Estados Unidos/epidemiología , Incidencia , Pandemias , COVID-19/epidemiología , Neoplasias del Sistema Nervioso Central/epidemiología , Encéfalo
6.
World Neurosurg ; 181: e107-e116, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37619838

RESUMEN

BACKGROUND: Spinal cord ependymomas (SCEs) represent the most common intramedullary spinal cord tumors among adults. Research shows that access to neurosurgical care and patient outcomes can be greatly influenced by patient location. This study investigates the association between the outcomes of patients with SCE in metropolitan and nonmetropolitan areas. METHODS: Cases of SCE between 2004 and 2019 were identified within the Central Brain Tumor Registry of the United States, a combined dataset including the Centers for Disease Control and Prevention's National Program of Cancer Registries and National Cancer Institute's Surveillance, Epidemiology, and End Results Program data. Multivariable logistic regression models were constructed to evaluate the association between urbanicity and SCE treatment, adjusted for age at diagnosis, sex, race and ethnicity. Survival data was available from 42 National Program of Cancer Registries (excluding Kansas and Minnesota, for which county data are unavailable), and Cox proportional hazard models were used to understand the effect of surgical treatment, county urbanicity, age at diagnosis, and the interaction effect between age at diagnosis and surgery, on the survival time of patients. RESULTS: Overall, 7577 patients were identified, with 6454 (85%) residing in metropolitan and 1223 (15%) in nonmetropolitan counties. Metropolitan and nonmetropolitan counties had different age, sex, and race/ethnicity compositions; however, demographics were not associated with differences in the type of surgery received when stratified by urbanicity. Irrespective of metropolitan status, individuals who were American Indian/Alaska Native non-Hispanic and Hispanic (all races) were associated with reduced odds of receiving surgery. Individuals who were Black non-Hispanic and Hispanic were associated with increased odds of receiving comprehensive treatment. Diagnosis of SCE at later ages was linked with elevated mortality (hazard ratio = 4.85, P < 0.001). Gross total resection was associated with reduced risk of death (hazard ratio = 0.37, P = 0.004), and age did not interact with gross total resection to influence risk of death. CONCLUSIONS: The relationship between patients' residential location and access to neurosurgical care is critical to ensuring equitable distribution of care. This study represents an important step in delineating areas of existing disparities.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Neoplasias de la Médula Espinal , Adulto , Humanos , Estados Unidos/epidemiología , Ependimoma/epidemiología , Ependimoma/terapia , Ependimoma/diagnóstico , Neoplasias de la Médula Espinal/epidemiología , Neoplasias de la Médula Espinal/cirugía , Neoplasias de la Médula Espinal/patología , Etnicidad
7.
Neuro Oncol ; 26(2): 387-396, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37738677

RESUMEN

BACKGROUND: Comprehensive analysis of brain tumor incidence and survival in the Veteran population has been lacking. METHODS: Veteran data were obtained from the Veterans Health Administration (VHA) Medical Centers via VHA Corporate Data Warehouse. Brain tumor statistics on the overall US population were generated from the Central Brain Tumor Registry of the US data. Cases were individuals (≥18 years) with a primary brain tumor, diagnosed between 2004 and 2018. The average annual age-adjusted incidence rates (AAIR) and 95% confidence intervals were estimated per 100 000 population and Kaplan-Meier survival curves evaluated overall survival outcomes among Veterans. RESULTS: The Veteran population was primarily white (78%), male (93%), and between 60 and 64 years old (18%). Individuals with a primary brain tumor in the general US population were mainly female (59%) and between 18 and 49 years old (28%). The overall AAIR of primary brain tumors from 2004 to 2018 within the Veterans Affairs cancer registry was 11.6. Nonmalignant tumors were more common than malignant tumors (AAIR:7.19 vs 4.42). The most diagnosed tumors in Veterans were nonmalignant pituitary tumors (AAIR:2.96), nonmalignant meningioma (AAIR:2.62), and glioblastoma (AAIR:1.96). In the Veteran population, survival outcomes became worse with age and were lowest among individuals diagnosed with glioblastoma. CONCLUSIONS: Differences between Veteran and US populations can be broadly attributed to demographic composition differences of these groups. Prior to this, there have been no reports on national-level incidence rates and survival outcomes for Veterans. These data provide vital information that can drive efforts to understand disease burden and improve outcomes for individuals with primary brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Meníngeas , Meningioma , Veteranos , Humanos , Masculino , Femenino , Estados Unidos/epidemiología , Persona de Mediana Edad , Adolescente , Adulto Joven , Adulto , Glioblastoma/epidemiología , Glioblastoma/terapia , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/terapia
9.
J Neurooncol ; 165(2): 279-290, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37980692

RESUMEN

PURPOSE: Incidence, prevalence, and survival are population-based statistics describing cancer burden. The National Cancer Institute's (NCI) Comprehensive Oncology Network Evaluating Rare CNS Tumors (NCI-CONNECT) specializes in tumor biology and outcomes for 12 rare CNS tumor types selected for their importance in adults, research interest, or potential for targeted treatment. The aim of this study was to update incidence, prevalence, and survival statistics for these tumors. METHODS: The Central Brain Tumor Registry of the United States (CBTRUS) database, a combined dataset of Centers for Disease Control and Prevention's (CDC) National Program of Cancer Registries (NPCR) and NCI's Surveillance, Epidemiology and End Results (SEER) data, was used to calculate average annual age-adjusted incidence rates (AAAIR) per 100,000 population overall and by sex, race-ethnicity, and age for diagnosis years 2008-2019. Incidence time trends were calculated for diagnosis years 2004-2019. NPCR data were used to calculate relative survival rates. Point prevalence on December 31, 2019 was estimated using annual age-specific incidence and survival. RESULTS: AAAIR was 1.47 per 100,000 for these tumors combined, with highest incidence in ependymomas (AAAIR = 0.41/100,000). Most tumor types were more common in males, adults (ages 40 + years) or children (ages < 15 years), and non-Hispanic White individuals. Ependymomas were the most prevalent tumor type (19,320 cases) followed by oligodendrogliomas (14,900 cases). Ependymomas had the highest five-year survival (90.6%) and primary CNS sarcomas the lowest (7.7%). CONCLUSIONS: These data provide means to measure the impact of clinical care and evaluate new therapies and the evolving histopathology definitions in rare CNS tumor types.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Ependimoma , Niño , Adulto , Masculino , Humanos , Estados Unidos/epidemiología , Neoplasias Encefálicas/diagnóstico , Neoplasias del Sistema Nervioso Central/epidemiología , Sistema de Registros , Incidencia , Programa de VERF
10.
Neuro Oncol ; 25(12 Suppl 2): iv1-iv99, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37793125

RESUMEN

The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and the National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors available and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 24.83 per 100,000 population (malignant AAAIR=6.94 and non-malignant AAAIR=17.88). This overall rate was higher in females compared to males (27.85 versus 21.62 per 100,000) and non-Hispanic persons compared to Hispanic persons (25.24 versus 22.61 per 100,000). Gliomas accounted for 26.3% of all tumors. The most commonly occurring malignant brain and other CNS histopathology was glioblastoma (14.2% of all tumors and 50.9% of all malignant tumors), and the most common predominantly non-malignant histopathology was meningioma (40.8% of all tumors and 56.2% of all non-malignant tumors). Glioblastomas were more common in males, and meningiomas were more common in females. In children and adolescents (ages 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.13 per 100,000 population. There were 86,030 deaths attributed to malignant brain and other CNS tumors between 2016 and 2020. This represents an average annual mortality rate of 4.42 per 100,000 population and an average of 17,206 deaths per year. The five-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 35.7%, for a non-malignant brain and other CNS tumor the five-year relative survival rate was 91.8%.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioblastoma , Neoplasias Meníngeas , Meningioma , Niño , Masculino , Adolescente , Femenino , Humanos , Estados Unidos/epidemiología , Neoplasias del Sistema Nervioso Central/epidemiología , Neoplasias Encefálicas/epidemiología , Incidencia , Sistema de Registros , Encéfalo
11.
Neurooncol Adv ; 5(Suppl 1): i5-i12, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37287573

RESUMEN

Background: Previous research has identified older age, African-American race, and female sex as meningioma risk factors, but there is limited information on their joint effects, or on how these demographic factors vary across strata of tumor grade. Methods: The Central Brain Tumor Registry of the United States (CBTRUS) is a population-based registry combining data from the CDC's National Program of Cancer Registries and NCI's Surveillance, Epidemiology and End Results Program which covers ~100% of the U.S. population and aggregates incidence data on all primary malignant and nonmalignant brain tumors. These data were used to explore the joint impacts of sex and race/ethnicity on average annual age-adjusted incidence rates of meningioma. We calculated meningioma incidence rate ratios (IRRs) by sex and race/ethnicity, across strata of age and tumor grade. Results: Compared to individuals who are non-Hispanic White, individuals who are non-Hispanic Black had significantly higher risk of grade 1 (IRR = 1.23; 95% CI: 1.21-1.24) and grade 2-3 meningioma (IRR = 1.42; 95% CI: 1.37-1.47). The female-to-male IRR peaked in the fifth decade of life across all racial/ethnic groups and tumor grades, but was 3.59 (95% CI: 3.51-3.67) for WHO grade 1 meningioma and 1.74 (95% CI: 1.63-1.87) for WHO grade 2-3 meningioma. Conclusions: This study reveals the joint effects of sex and race/ethnicity on meningioma incidence throughout the lifespan and across strata of tumor grade, highlighting incidence disparities among females and African-Americans that may inform future strategies for tumor interception.

12.
Cancer ; 129(16): 2514-2521, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199898

RESUMEN

BACKGROUND: Primary brain tumors (BTs) are rare, but cause morbidity and mortality disproportionately to their incidence. Prevalence estimates population-level cancer burdens at a specified time. This study estimates the prevalence of malignant and non-malignant BTs in comparison to other cancers. METHODS: Incidence data were obtained from the Central Brain Tumor Registry of the United States (2000-2019, varying), a combined data set including the Center for Disease Control and Prevention's National Program of Cancer Registries and National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program. Incidence of non-BT cancers were obtained from the United States Cancer Statistics (2001-2019). Incidence and survival estimates for all cancers were obtained from SEER (1975-2018). Complete prevalence as of December 31, 2019, was estimated using prevEst. Estimates were generated overall for non-BT cancers, by BT histopathology, age groups at prevalence (0-14, 15-39, 40-64, 65+ years), and sex. RESULTS: We estimated 1,323,121 individuals with a diagnosis of BTs at the date of prevalence. The majority of BT cases had non-malignant tumors (85.3%). Among all cancers, BTs were the most prevalent cancer type among those ages 15 to 39 years, second among those ages 0 to 14 years, and in the top five among those ages 40 to 64 years. The plurality of prevalent cases (43.5%) occurred among those ages 65+ years. Overall, females had a higher prevalence of BTs than males, with an overall female:male prevalence ratio of 1.68. CONCLUSIONS: BTs contribute significantly to the cancer burden in the United States, particularly among those younger than age 65 years. Understanding complete prevalence is crucial for monitoring cancer burden to inform clinical research and public policy.


Asunto(s)
Neoplasias Encefálicas , Neoplasias , Masculino , Humanos , Femenino , Estados Unidos/epidemiología , Recién Nacido , Anciano , Prevalencia , Neoplasias Encefálicas/epidemiología , Sistema de Registros , Incidencia , Manejo de Datos , Programa de VERF
14.
J Natl Cancer Inst ; 115(6): 749-752, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36782354

RESUMEN

Medicaid eligibility expansion, though not directly applicable to children, has been associated with improved access to care in children with cancer, but associations with overall survival are unknown. Data for children ages 0 to 14 years diagnosed with cancer from 2011 to 2018 were queried from central cancer registries data covering cancer diagnoses from 40 states as part of the Centers for Disease Control and Prevention's National Program of Cancer Registries. Difference-in-differences analyses were used to compare changes in 2-year survival from 2011-2013 to 2015-2018 in Medicaid expansion relative to nonexpansion states. In adjusted analyses, there was a 1.50 percentage point (95% confidence interval = 0.37 to 2.64) increase in 2-year overall survival after 2014 in expansion relative to nonexpansion states, particularly for those living in the lowest county income quartile (difference-in-differences = 5.12 percentage point, 95% confidence interval = 2.59 to 7.65). Medicaid expansion may improve cancer outcomes for children with cancer.


Asunto(s)
Medicaid , Neoplasias , Estados Unidos/epidemiología , Niño , Humanos , Patient Protection and Affordable Care Act , Neoplasias/epidemiología , Neoplasias/terapia , Pobreza , Sistema de Registros , Cobertura del Seguro
15.
Neurooncol Pract ; 10(1): 24-33, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36659967

RESUMEN

Background: A newly developed brain molecular marker (BMM) data item was implemented by US cancer registries for individuals diagnosed with brain tumors in 2018-including IDH and 1p/19q-co-deletion statuses for adult-type diffuse gliomas. We thus investigated the testing/reporting completeness of BMM in the United States. Methods: Cases of histopathologically confirmed glioblastoma, astrocytoma, and oligodendroglioma diagnosed in 2018 were identified in the National Cancer Database. Adjusted odds ratios (ORadj) and 95% confidence intervals (CI) of BMM testing/reporting were evaluated for association with the selected patient, treatment, and facility-level characteristics using multivariable logistic regression. As a secondary analysis, predictors of MGMT promoter methylation testing/reporting among IDH-wildtype glioblastoma individuals were assessed. Key limitations of the BMM data item were that it did not include any details regarding testing technique or assay type and could not distinguish between a lack of testing and a lack of cancer registry reporting of testing results. Results: Among 8306 histopathologically diagnosed adult-type diffuse gliomas nationally, overall BMM testing/reporting completeness was 81.1%. Compared to biopsy-only cases, odds of testing/reporting increased for subtotal (ORadj= 1.38 [95% CI: 1.20-1.59], P < .001) and gross total resection (ORadj=1.50 [95% CI: 1.31-1.72], P < .001). Furthermore, the odds were lowest at community centers (hospitals (67.3%; ORadj=0.35 [95% CI: 0.26-0.46], P < .001) and highest at academic/NCI-designated comprehensive cancer centers (85.4%; referent). By geographical location, BMM testing/reporting completeness ranged from a high of 86.8% at New England (referent) to a low of 76.0 % in the West South Central region (ORadj=0.57 [95% CI: 0.42-0.78]; P < .001). Extent of resection, Commission-on-Cancer facility type, and facility location were additionally significant predictors of MGMT testing/reporting among IDH-wildtype glioblastoma cases. Conclusions: Initial BMM testing/reporting completeness for individuals with adult-type diffuse gliomas in the United States was promising, although patterns varied by hospital attributes and extent of resection.

17.
Neuro Oncol ; 25(2): 398-406, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35868246

RESUMEN

BACKGROUND: Glioma incidence is 25% lower in Hispanics than White non-Hispanics. The US Hispanic population is diverse, and registry-based analyses may mask incidence differences associated with geographic/ancestral origins. METHODS: County-level glioma incidence data in Hispanics were retrieved from the Central Brain Tumor Registry of the United States. American Community Survey data were used to determine the county-level proportion of the Hispanic population of Mexican/Central American and Caribbean origins. Age-adjusted incidence rate ratios and incidence rate ratios (IRRs) quantified the glioma incidence differences across groups. State-level estimates of admixture in Hispanics were obtained from published 23andMe data. RESULTS: Compared to predominantly Caribbean-origin counties, predominantly Mexican/Central American-origin counties had lower age-adjusted risks of glioma (IRR = 0.83; P < 0.0001), glioblastoma (IRR = 0.86; P < 0.0001), diffuse/anaplastic astrocytoma (IRR = 0.78; P < 0.0001), oligodendroglioma (IRR = 0.82; P < 0.0001), ependymoma (IRR = 0.88; P = 0.012), and pilocytic astrocytoma (IRR = 0.76; P < 0.0001). Associations were consistent in children and adults and using more granular geographic regions. Despite having lower glioma incidence, Hispanic glioblastoma patients from predominantly Mexican/Central American-origin counties had poorer survival than Hispanics living in predominantly Caribbean-origin counties. Incidence and survival differences could be partially explained by state-level estimates of European admixture in Hispanics with European admixture associated with higher incidence and improved survival. CONCLUSIONS: Glioma incidence and outcomes differ in association with the geographic origins of Hispanic communities, with counties of predominantly Mexican/Central American origin at significantly reduced risk and those of Caribbean origin at comparatively greater risk. Although typically classified as a single ethnic group, appreciating the cultural, socioeconomic, and genetic diversity of Hispanics can advance cancer disparities research.


Asunto(s)
Astrocitoma , Glioblastoma , Glioma , Adulto , Niño , Humanos , Astrocitoma/etnología , Glioblastoma/etnología , Glioma/etnología , Hispánicos o Latinos , Incidencia , Estados Unidos/epidemiología
18.
Neuro Oncol ; 24(Suppl 5): v1-v95, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36196752

RESUMEN

The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and the National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors available and supersedes all previous reports in terms of completeness and accuracy. All rates are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 24.71 per 100,000 population (malignant AAAIR=7.02 and non-malignant AAAIR=17.69). This overall rate was higher in females compared to males (27.62 versus 21.60 per 100,000) and non-Hispanic persons compared to Hispanic persons (25.09 versus 22.95 per 100,000). The most commonly occurring malignant brain and other CNS histopathology was glioblastoma (14.2% of all tumors and 50.1% of all malignant tumors), and the most common non-malignant histopathology was meningioma (39.7% of all tumors and 55.4% of all non-malignant tumors). Glioblastoma was more common in males, and meningiomas were more common in females. In children and adolescents (ages 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.20 per 100,000 population. An estimated 93,470 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US population in 2022 (26,670 malignant and 66,806 non-malignant). There were 84,264 deaths attributed to malignant brain and other CNS tumors between 2015 and 2019. This represents an average annual mortality rate of 4.41 per 100,000 population and an average of 16,853 deaths per year. The five-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 35.7%, while for non-malignant brain and other CNS tumors the five-year relative survival rate was 91.8%.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioblastoma , Neoplasias Meníngeas , Meningioma , Adolescente , Adulto , Encéfalo , Neoplasias Encefálicas/epidemiología , Neoplasias del Sistema Nervioso Central/epidemiología , Niño , Preescolar , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Neoplasias Meníngeas/epidemiología , Meningioma/epidemiología , Sistema de Registros , Estados Unidos/epidemiología , Adulto Joven
19.
Neuro Oncol ; 24(Suppl 3): iii1-iii38, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066969

RESUMEN

The CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018 comprehensively describes the current population-based incidence of primary malignant and non-malignant brain and other CNS tumors in children and adolescents ages 0-19 years, collected and reported by central cancer registries covering approximately 100% of the United States population. Overall, brain and other CNS tumors are the most common solid tumor, the most common cancer, and the most common cause of cancer death in children and adolescents ages 0-19 years. This report aims to serve as a useful resource for researchers, clinicians, patients, and families.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Adolescente , Adulto , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/terapia , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/epidemiología , Neoplasias del Sistema Nervioso Central/patología , Niño , Preescolar , Humanos , Incidencia , Lactante , Recién Nacido , Sistema de Registros , Estados Unidos/epidemiología , Adulto Joven
20.
Neurooncol Pract ; 9(3): 165-182, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35601966

RESUMEN

Background: The Central Brain Tumor Registry of the United States (CBTRUS) contains information on all primary brain and other central nervous system (CNS) tumors diagnosed in the United States (US). Here we summarize the 2021 CBTRUS annual statistical report for clinicians. Methods: Incidence survival data are obtained from the Centers for Disease Control's National Program of Cancer Registries (NPCR) and National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) program. Survival data are obtained from NPCR. Mortality data are obtained from the National Vital Statistics System. Incidence and mortality rates are age-adjusted using the 2000 US population and presented per 100,000 population. Results: An annual average of 86,355 cases of primary malignant and nonmalignant CNS tumors were diagnosed over the period 2014-2018, corresponding to an average annual age-adjusted incidence rate of 24.25. The most commonly occurring malignant tumor was glioblastoma (14.3%), and the most common predominately nonmalignant tumor was meningioma (39%). Over the 2014-2018 period, there were 16,606 annual average deaths due to malignant primary CNS tumors, corresponding to an average annual age-adjusted mortality rate of 4.43. In this report we detail key incidence, survival, and mortality statistics for major primary CNS tumor histologies, highlighting relevant differences by age, sex, and race. Conclusions: This summary describes the most up to date population-based incidence of primary malignant and nonmalignant brain and other CNS tumors in the US, and mortality and survival for primary malignant tumors and aims to serve as a useful resource for clinicians.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...