Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 341: 140004, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652251

RESUMEN

In recent decades, male infertility has been on the rise, largely attributed to exposure to chemicals with endocrine-disrupting properties. The adverse effects of disrupting androgen actions on the development and reproductive health of children and adolescents have been extensively studied. Flame retardants (FRs), used in consumer products to delay flammability, have been identified as antagonists of the androgen receptor (AR), potentially leading to adverse outcomes in male reproductive health later in life. This study examined the interaction of eight novel FRs with the AR, employing an in vitro AR-dependent luciferase reporter gene assay utilizing MDA-kb2 cells. The investigation revealed the anti-androgenic activity of tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), a frequently detected FR in the environment. Furthermore, TDBP-TAZTO contributed to anti-androgenic activity when combined with six other anti-androgenic FRs. The mixture effects were predicted by three commonly employed models: concentration addition (CA), generalized CA, and independent action, with the CA model showcasing the highest accuracy. This suggests that all FRs act through a similar mechanism, as further confirmed by in silico molecular docking, indicating limited synergy or antagonism. Importantly, in the mixtures, each FR contributed to the induction of anti-androgenic effects at concentrations below their individual effective concentrations in single exposures. This raises concern for public health, especially considering the co-detection of these FRs and their potential co-occurrence with other anti-androgenic chemicals like bisphenols. Therefore, our findings, along with previous research, strongly support the incorporation of combined effects of mixtures in risk assessment to efficiently safeguard population health.


Asunto(s)
Antagonistas de Andrógenos , Retardadores de Llama , Niño , Humanos , Masculino , Adolescente , Antagonistas de Andrógenos/toxicidad , Retardadores de Llama/toxicidad , Simulación del Acoplamiento Molecular , Andrógenos/farmacología
2.
Environ Sci Technol ; 57(5): 2006-2018, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36693630

RESUMEN

The present study aims to evaluate the effects of repeated exposure to 2-ethylhexyldiphenyl phosphate (EHDPP) on human liver cells. In vitro three-dimensional (3D) hepatospheroid cell culture was utilized to explore the potential mechanisms of EHDPP-mediated metabolic disruption through morphological, transcriptional, and biochemical assays. Lipidomics analysis was performed on the individual hepatospheroids to investigate the effects on intracellular lipid profiles, followed by hepatospheroid morphology, growth, functional parameters, and cytotoxicity evaluation. The possible mechanisms were delineated using the gene-level analysis by assessing the expression of key genes encoding for hepatic lipid metabolism. We revealed that exposure to EHDPP at 1 and 10 µM for 7 days alters the lipid profile of human 3D hepatospheroids. Dysregulation in several lipid classes, including sterol lipids (cholesterol esters), sphingolipids (dihydroceramide, hexosylceramide, ceramide, sphingomyelin), glycerolipids (triglycerides), glycerophospholipids, and fatty acyls, was noted along with alteration in genes including ACAT1, ACAT2, CYP27A1, ABCA1, GPAT2, PNPLA2, PGC1α, and Nrf2. Our study brings a novel insight into the metabolic disrupting effects of EHDPP and demonstrates the utility of hepatospheroids as an in vitro cell culture model complemented with omics technology (e.g., lipidomics) for mechanistic toxicity studies.


Asunto(s)
Retardadores de Llama , Fosfatos , Humanos , Lipidómica , Retardadores de Llama/toxicidad , Hígado/metabolismo , Técnicas de Cultivo de Célula , Lípidos
3.
Environ Res ; 217: 114650, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36309218

RESUMEN

While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.


Asunto(s)
Rutas de Resultados Adversos , Humanos , Medición de Riesgo/métodos
4.
Metabolism ; 126: 154925, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740573

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease worldwide. With no Food and Drug Administration approved drugs, current treatment options include dietary restrictions and lifestyle modification. NAFLD is closely associated with metabolic disorders such as obesity, type 2 diabetes, and dyslipidemia. Hence, clinically various pharmacological approaches using existing drugs such as antidiabetic, anti-obesity, antioxidants, and cytoprotective agents have been considered in the management of NAFLD and nonalcoholic steatohepatitis (NASH). However, several pharmacological therapies aiming to alleviate NAFLD-NASH are currently being examined at various phases of clinical trials. Emerging data from these studies with drugs targeting diverse molecular mechanisms show promising outcomes. This review summarizes the current understanding of the pathogenic mechanisms of NAFLD and provides an insight into the pharmacological targets and emerging therapeutics with specific interventional mechanisms. In addition, we also discuss the importance and utility of new approach methodologies and regulatory perspectives for NAFLD-NASH drug development.


Asunto(s)
Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Antioxidantes/uso terapéutico , Diseño de Fármacos , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo
5.
Environ Pollut ; 289: 117855, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34340181

RESUMEN

A wide range of novel replacement flame retardants (nFRs) is consistently detected in increasing concentrations in the environment and human matrices. Evidence suggests that nFRs exposure may be associated with disruption of the endocrine system, which has been linked with the etiology of various metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). NAFLD is a multifactorial disease characterized by the uncontrolled accumulation of fats (lipids) in the hepatocytes and involves multiple-hit pathogenesis, including exposure to occupational and environmental chemicals such as organophosphate flame retardants (OPFRs). In the present study we aimed to investigate the potential mechanisms of the nFRs-induced hepatic steatosis in the human liver cells. In this study, we employed an in vitro bioassay toolbox to assess the key events (KEs) in the proposed adverse outcome pathways (AOP) (s) for hepatic steatosis. We examined nine nFRs using AOP- based in vitro assays measuring KEs such as lipid accumulation, mitochondrial dysfunction, gene expression, and in silico approach to identify the putative molecular initiating events (MIEs). Our findings suggest that several tested OPFRs induced lipid accumulation in human liver cell culture. Tricresyl phosphate (TMPP), triphenyl phosphate (TPHP), tris(1,3-dichloropropyl) phosphate (TDCIPP), and 2-ethylhexyl diphenyl phosphate (EHDPP) induced the highest lipid accumulation by altering the expression of genes encoding hepatic de novo lipogenesis and mitochondrial dysfunction depicted by decreased cellular ATP production. Available in vitro data from ToxCast and in silico molecular docking suggests that pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ) could be the molecular targets for the tested nFRs. The study identifies several nFRs, such as TMPP and EHDPP, TPHP, and TDCIPP, as potential risk factor for NAFLD and advances our understanding of the mechanisms involved, demonstrating the utility of an AOP-based strategy for screening and prioritizing chemicals and elucidating the molecular mechanisms of toxicity.


Asunto(s)
Rutas de Resultados Adversos , Retardadores de Llama , Técnicas de Cultivo de Célula , Retardadores de Llama/toxicidad , Hepatocitos , Humanos , Simulación del Acoplamiento Molecular , Organofosfatos
6.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924165

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system's components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.


Asunto(s)
Susceptibilidad a Enfermedades , Retardadores de Llama/efectos adversos , Interferones/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal , Animales , Biomarcadores , Citocinas/metabolismo , Descubrimiento de Drogas , Humanos , Inflamación/etiología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/patología
7.
Environ Int ; 153: 106550, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33848905

RESUMEN

BACKGROUND AND AIM: Endocrine disrupting chemicals (EDCs) constitute a major public health concern because they can induce a large spectrum of adverse effects by interfering with the hormonal system. Rapid identification of potential EDCs using in vitro screenings is therefore critical, particularly for chemicals of emerging concerns such as replacement flame retardants (FRs). The review aimed at identifying (1) data gaps and research needs regarding endocrine disrupting (ED) properties of replacement FRs and (2) potential EDCs among these emerging chemicals. METHODS: A systematic search was performed from open literature and ToxCast/Tox21 programs, and results from in vitro tests on the activities of 52 replacement FRs towards five hormone nuclear receptors (NRs) associated with reproductive outcomes (estrogen, androgen, glucocorticoid, progesterone, and aryl hydrocarbon receptors) were compiled and organized into tables. Findings were complemented with information from structure-based in silico model predictions and in vivo information when relevant. RESULTS: For the majority of the 52 replacement FRs, experimental in vitro data on activities towards these five NRs were either incomplete (15 FRs) or not found (24 FRs). Within the replacement FRs for which effect data were found, some appeared as candidate EDCs, such as triphenyl phosphate (TPhP) and tris(1,3-dichloropropyl)phosphate (TDCIPP). The search also revealed shared ED profiles. For example, anti-androgenic activity was reported for 19 FRs and predicted for another 21 FRs. DISCUSSION: This comprehensive review points to critical gaps in knowledge on ED potential for many replacement FRs, including chemicals to which the general population is likely exposed. Although this review does not cover all possible characteristics of ED, it allowed the identification of potential EDCs associated with reproductive outcomes, calling for deeper evaluation and possibly future regulation of these chemicals. By identifying shared ED profiles, this work also raises concerns for mixture effects since the population is co-exposed to several FRs and other chemicals.


Asunto(s)
Disruptores Endocrinos , Retardadores de Llama , Disruptores Endocrinos/toxicidad , Retardadores de Llama/toxicidad , Humanos , Fosfatos , Receptores Citoplasmáticos y Nucleares , Reproducción
8.
Eur J Pharmacol ; 843: 12-26, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30359563

RESUMEN

Oxidative stress and inflammation are the mediators of diabetes and related secondary complications. Oxidative stress arises because of the excessive production of reactive oxygen species and diminished antioxidant production due to impaired Nrf2 activation, the master regulator of endogenous antioxidant. It has been established from various animal models that the transcription factor Nrf2 provides cytoprotection, ameliorates oxidative stress, inflammation and delays the progression of diabetes and its associated complications. Whereas, deletion of the transcription factor Nrf2 amplifies tissue level pathogenic alterations. In addition, Nrf2 also regulates the expression of numerous cellular defensive genes and protects against oxidative stress-mediated injuries in diabetes. The present review provides an overview on the role of Nrf2 in type 1 diabetes and explores if it could be a potential target for the treatment of diabetes and related complications. Further, the rationality of different agent's intervention has been discussed to mitigate organ damages induced by diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Humanos , Hiperglucemia , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...