Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 14(1): e0318422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36598192

RESUMEN

Aspergillus fumigatus is a ubiquitous environmental mold that causes significant mortality particularly among immunocompromised patients. The detection of the Aspergillus-derived carbohydrate galactomannan in patient serum and bronchoalveolar lavage fluid is the major biomarker used to detect A. fumigatus infection in clinical medicine. Despite the clinical relevance of this carbohydrate, we lack a fundamental understanding of how galactomannan is recognized by the immune system and its consequences. Galactomannan is composed of a linear mannan backbone with galactofuranose sidechains and is found both attached to the cell surface of Aspergillus and as a soluble carbohydrate in the extracellular milieu. In this study, we utilized fungal-like particles composed of highly purified Aspergillus galactomannan to identify a C-type lectin host receptor for this fungal carbohydrate. We identified a novel and specific interaction between Aspergillus galactomannan and the C-type lectin receptor Dectin-2. We demonstrate that galactomannan bound to Dectin-2 and induced Dectin-2-dependent signaling, including activation of spleen tyrosine kinase, gene transcription, and tumor necrosis factor alpha (TNF-α) production. Deficiency of Dectin-2 increased immune cell recruitment to the lungs but was dispensable for survival in a mouse model of pulmonary aspergillosis. Our results identify a novel interaction between galactomannan and Dectin-2 and demonstrate that Dectin-2 is a receptor for galactomannan, which leads to a proinflammatory immune response in the lung. IMPORTANCE Aspergillus fumigatus is a fungal pathogen that causes serious and often fatal disease in humans. The surface of Aspergillus is composed of complex sugar molecules. Recognition of these carbohydrates by immune cells by carbohydrate lectin receptors can lead to clearance of the infection or, in some cases, benefit the fungus by dampening the host response. Galactomannan is a carbohydrate that is part of the cell surface of Aspergillus but is also released during infection and is found in patient lungs as well as their bloodstreams. The significance of our research is that we have identified Dectin-2 as a mammalian immune cell receptor that recognizes, binds, and signals in response to galactomannan. These results enhance our understanding of how this carbohydrate interacts with the immune system at the site of infection and will lead to broader understanding of how release of galactomannan by Aspergillus effects the immune response in infected patients.


Asunto(s)
Aspergillus fumigatus , Mananos , Animales , Ratones , Humanos , Lectinas Tipo C/metabolismo , Mamíferos/metabolismo
2.
mBio ; 11(3)2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398316

RESUMEN

Invasive fungal infections constitute a lethal threat, with patient mortality as high as 90%. The incidence of invasive fungal infections is increasing, especially in the setting of patients receiving immunomodulatory agents, chemotherapy, or immunosuppressive medications following solid-organ or bone marrow transplantation. In addition, inhibitors of spleen tyrosine kinase (Syk) have been recently developed for the treatment of patients with refractory autoimmune and hematologic indications. Neutrophils are the initial innate cellular responders to many types of pathogens, including invasive fungi. A central process governing neutrophil recognition of fungi is through lectin binding receptors, many of which rely on Syk for cellular activation. We previously demonstrated that Syk activation is essential for cellular activation, phagosomal maturation, and elimination of phagocytosed fungal pathogens in macrophages. Here, we used combined genetic and chemical inhibitor approaches to evaluate the importance of Syk in the response of neutrophils to Candida species. We took advantage of a Cas9-expressing neutrophil progenitor cell line to generate isogenic wild-type and Syk-deficient neutrophils. Syk-deficient neutrophils are unable to control the human pathogens Candida albicans, Candida glabrata, and Candida auris Neutrophil responses to Candida species, including the production of reactive oxygen species and of cytokines such as tumor necrosis factor alpha (TNF-α), the formation of neutrophil extracellular traps (NETs), phagocytosis, and neutrophil swarming, appear to be critically dependent on Syk. These results demonstrate an essential role for Syk in neutrophil responses to Candida species and raise concern for increased fungal infections with the development of Syk-modulating therapeutics.IMPORTANCE Neutrophils are recognized to represent significant immune cell mediators for the clearance and elimination of the human-pathogenic fungal pathogen Candida The sensing of fungi by innate cells is performed, in part, through lectin receptor recognition of cell wall components and downstream cellular activation by signaling components, including spleen tyrosine kinase (Syk). While the essential role of Syk in macrophages and dendritic cells is clear, there remains uncertainty with respect to its contribution in neutrophils. In this study, we demonstrated that Syk is critical for multiple cellular functions in neutrophils responding to major human-pathogenic Candida species. These data not only demonstrate the vital nature of Syk with respect to the control of fungi by neutrophils but also warn of the potential infectious complications arising from the recent clinical development of novel Syk inhibitors for hematologic and autoimmune disorders.


Asunto(s)
Candida/patogenicidad , Candidiasis/inmunología , Regulación de la Expresión Génica , Neutrófilos/inmunología , Quinasa Syk/metabolismo , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/microbiología , Candida/clasificación , Línea Celular , Citocinas/inmunología , Trampas Extracelulares/inmunología , Femenino , Masculino , Ratones , Neutrófilos/microbiología , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Quinasa Syk/genética
3.
FASEB J ; 33(11): 12500-12514, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31408613

RESUMEN

The tetraspanin CD82 is a potent suppressor of tumor metastasis and regulates several processes including signal transduction, cell adhesion, motility, and aggregation. However, the mechanisms by which CD82 participates in innate immunity are unknown. We report that CD82 is a key regulator of TLR9 trafficking and signaling. TLR9 recognizes unmethylated cytosine-phosphate-guanine (CpG) motifs present in viral, bacterial, and fungal DNA. We demonstrate that TLR9 and CD82 associate in macrophages, which occurs in the endoplasmic reticulum (ER) and post-ER. Moreover, CD82 is essential for TLR9-dependent myddosome formation in response to CpG stimulation. Finally, CD82 modulates TLR9-dependent NF-κB nuclear translocation, which is critical for inflammatory cytokine production. To our knowledge, this is the first time a tetraspanin has been implicated as a key regulator of TLR signaling. Collectively, our study demonstrates that CD82 is a specific regulator of TLR9 signaling, which may be critical in cancer immunotherapy approaches and coordinating the innate immune response to pathogens.-Khan, N. S., Lukason, D. P., Feliu, M., Ward, R. A., Lord, A. K., Reedy, J. L., Ramirez-Ortiz, Z. G., Tam, J. M., Kasperkovitz, P. V., Negoro, P. E., Vyas, T. D., Xu, S., Brinkmann, M. M., Acharaya, M., Artavanis-Tsakonas, K., Frickel, E.-M., Becker, C. E., Dagher, Z., Kim, Y.-M., Latz, E., Ploegh, H. L., Mansour, M. K., Miranti, C. K., Levitz, S. M., Vyas, J. M. CD82 controls CpG-dependent TLR9 signaling.


Asunto(s)
Núcleo Celular/inmunología , Proteína Kangai-1/inmunología , Macrófagos/inmunología , Oligodesoxirribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 9/inmunología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Animales , Núcleo Celular/genética , Citocinas/genética , Citocinas/inmunología , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/patología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Proteína Kangai-1/genética , Macrófagos/patología , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/inmunología , Células RAW 264.7 , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 9/genética
4.
J Immunol ; 202(11): 3256-3266, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31010852

RESUMEN

Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate ß-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1ß) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.


Asunto(s)
Candida albicans/fisiología , Candidiasis/metabolismo , Membrana Celular/metabolismo , Proteína Kangai-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Fagosomas/metabolismo , Animales , Candidiasis/inmunología , Línea Celular , Predisposición Genética a la Enfermedad , Humanos , Inmunidad Celular , Interleucina-1beta/metabolismo , Proteína Kangai-1/genética , Lectinas Tipo C/genética , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
5.
Virulence ; 9(1): 1150-1162, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962263

RESUMEN

Candida spp. are the fourth leading cause of nosocomial blood stream infections in North America. Candida glabrata is the second most frequently isolated species, and rapid development of antifungal resistance has made treatment a challenge. In this study, we investigate the therapeutic potential of metformin, a biguanide with well-established action for diabetes, as an antifungal agent against C. glabrata. Both wild type and antifungal-resistant isolates of C. glabrata were subjected to biguanide and biguanide-antifungal combination treatment. Metformin, as well as other members of the biguanide family, were found to have antifungal activity against C. glabrata, with MIC50 of 9.34 ± 0.16 mg/mL, 2.09 ± 0.04 mg/mL and 1.87 ± 0.05 mg/mL for metformin, phenformin and buformin, respectively. We demonstrate that biguanides enhance the activity of several antifungal drugs, including voriconazole, fluconazole, and amphotericin, but not micafungin. The biguanide-antifungal combinations allowed for additional antifungal effects, with fraction inhibition concentration indexes ranging from 0.5 to 1. Furthermore, metformin was able to lower antifungal MIC50 in voriconazole and fluconazole-resistant clinical isolates of C. glabrata. We also observed growth reduction of C. glabrata with rapamycin and an FIC of 0.84 ± 0.09 when combined with metformin, suggesting biguanide action in C. glabrata may be related to inhibition of the mTOR complex. We conclude that the biguanide class has direct antifungal therapeutic potential and enhances the activity of select antifungals in the treatment of resistant C. glabrata isolates. These data support the further investigation of biguanides in the combination treatment of serious fungal infections.


Asunto(s)
Antifúngicos/farmacología , Biguanidas/farmacología , Candida glabrata/efectos de los fármacos , Candida/efectos de los fármacos , Anfotericina B/farmacología , Candida glabrata/crecimiento & desarrollo , Combinación de Medicamentos , Farmacorresistencia Fúngica , Equinocandinas/farmacología , Fluconazol/farmacología , Humanos , Lipopéptidos/farmacología , Metformina/farmacología , Micafungina , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Micosis/microbiología , Serina-Treonina Quinasas TOR/efectos de los fármacos , Voriconazol/farmacología
6.
Front Immunol ; 9: 1058, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868018

RESUMEN

Macrophages play a critical role in the elimination of fungal pathogens. They are sensed via cell surface pattern-recognition receptors and are phagocytosed into newly formed organelles called phagosomes. Phagosomes mature through the recruitment of proteins and lysosomes, resulting in addition of proteolytic enzymes and acidification of the microenvironment. Our earlier studies demonstrated an essential role of Dectin-1-dependent activation of spleen tyrosine kinase (Syk) in the maturation of fungal containing phagosomes. The absence of Syk activity interrupted phago-lysosomal fusion resulting in arrest at an early phagosome stage. In this study, we sought to define the contribution of Syk to the control of phagocytosed live Candida glabrata in primary macrophages. To accurately measure intracellular yeast division, we designed a carboxyfluorescein succinimidyl ester (CFSE) yeast division assay in which bright fluorescent parent cells give rise to dim daughter cells. The CFSE-labeling of C. glabrata did not affect the growth rate of the yeast. Following incubation with macrophages, internalized CFSE-labeled C. glabrata were retrieved by cellular lysis, tagged using ConA-647, and the amount of residual CFSE fluorescence was assessed by flow cytometry. C. glabrata remained undivided (CFSE bright) for up to 18 h in co-culture with primary macrophages. Treatment of macrophages with R406, a specific Syk inhibitor, resulted in loss of intracellular control of C. glabrata with initiation of division within 4 h. Delayed Syk inhibition after 8 h was less effective indicating that Syk is critically required at early stages of macrophage-fungal interaction. In conclusion, we demonstrate a new method of tracking division of C. glabrata using CFSE labeling. Our results suggest that early Syk activation is essential for macrophage control of phagocytosed C. glabrata.


Asunto(s)
Candida glabrata/fisiología , Candidiasis/metabolismo , Candidiasis/microbiología , División Celular , Macrófagos/metabolismo , Macrófagos/microbiología , Quinasa Syk/metabolismo , Animales , Biomarcadores , Candidiasis/inmunología , Rastreo Celular/métodos , Técnica del Anticuerpo Fluorescente , Macrófagos/inmunología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/microbiología , Ratones , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Infect Immun ; 85(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28031265

RESUMEN

Dematiaceous molds are found ubiquitously in the environment and cause a wide spectrum of human disease, including infections associated with high rates of mortality. Despite this, the mechanism of the innate immune response has been less well studied, although it is key in the clearance of fungal pathogens. Here, we focus on Exserohilum rostratum, a dematiaceous mold that caused 753 infections during a multistate outbreak due to injection of contaminated methylprednisolone. We show that macrophages are incapable of phagocytosing Exserohilum Despite a lack of phagocytosis, macrophage production of tumor necrosis factor alpha is triggered by hyphae but not spores and depends upon Dectin-1, a C-type lectin receptor. Dectin-1 is specifically recruited to the macrophage-hyphal interface but not the macrophage-spore interface due to differences in carbohydrate antigen expression between these two fungal forms. Corticosteroid and antifungal therapy perturb this response, resulting in decreased cytokine production. In vivo soft tissue infection in wild-type mice demonstrated that Exserohilum provokes robust neutrophilic and granulomatous inflammation capable of thwarting fungal growth. However, coadministration of methylprednisolone acetate results in robust hyphal tissue invasion and a significant reduction in immune cell recruitment. Our results suggest that Dectin-1 is crucial for macrophage recognition and the macrophage response to Exserohilum and that corticosteroids potently attenuate the immune response to this pathogen.


Asunto(s)
Ascomicetos/inmunología , Interacciones Huésped-Patógeno/inmunología , Lectinas Tipo C/metabolismo , Micosis/inmunología , Micosis/metabolismo , Corticoesteroides/farmacología , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Carbohidratos/inmunología , Pared Celular/inmunología , Citocinas/biosíntesis , Humanos , Hifa , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Micosis/microbiología , Fagocitosis , Esporas Fúngicas , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...