Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
ACS Nano ; 17(17): 16308-16325, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37643407

RESUMEN

Owing to their uniform and tunable particle size, pore size, and shape, along with their modular surface chemistry and biocompatibility, mesoporous silica nanoparticles (MSNs) have found extensive applications as nanocarriers to deliver therapeutic, diagnostic and combined "theranostic" cargos to cells and tissues. Although thoroughly investigated, MSN have garnered FDA approval for only one MSN system via oral administration. One possible reason is that there is no recognized, reproducible, and widely adopted MSN synthetic protocol, meaning not all MSNs are created equal in the laboratory nor in the eyes of the FDA. This manuscript provides the sol-gel and MSN research communities a reproducible, fully characterized synthetic protocol to synthesize MSNs and corresponding lipid-coated MSN delivery vehicles with predetermined particle size, pore size, and drug loading and release characteristics. By carefully articulating the step-by-step synthetic procedures and highlighting critical points and troubleshooting, augmented with videos and schematics, this Article will help researchers entering this rapidly expanding field to yield reliable results.


Asunto(s)
Nanomedicina , Nanopartículas , ARN Interferente Pequeño , ARN Mensajero , Lípidos
2.
Sci Rep ; 13(1): 6873, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105997

RESUMEN

Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann-Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.


Asunto(s)
Sistemas CRISPR-Cas , Nanopartículas , Ratones , Animales , Edición Génica , Antivirales , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Lípidos
3.
Entropy (Basel) ; 24(2)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35205562

RESUMEN

This present work explores the performance of a thermal-magnetic engine of Otto type, considering as a working substance an effective interacting spin model corresponding to the q- state clock model. We obtain all the thermodynamic quantities for the q = 2, 4, 6, and 8 cases in a small lattice size (3×3 with free boundary conditions) by using the exact partition function calculated from the energies of all the accessible microstates of the system. The extension to bigger lattices was performed using the mean-field approximation. Our results indicate that the total work extraction of the cycle is highest for the q=4 case, while the performance for the Ising model (q=2) is the lowest of all cases studied. These results are strongly linked with the phase diagram of the working substance and the location of the cycle in the different magnetic phases present, where we find that the transition from a ferromagnetic to a paramagnetic phase extracts more work than one of the Berezinskii-Kosterlitz-Thouless to paramagnetic type. Additionally, as the size of the lattice increases, the extraction work is lower than smaller lattices for all values of q presented in this study.

4.
Sci Rep ; 11(1): 22000, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753972

RESUMEN

The electrocaloric (EC) effect is the change in temperature and entropy of a material driven by the application of an electric field. Our tight-binding calculations linked to Fermi statistics, show that the EC effect can be produced in trilayer graphene (TLG) structures connected to a heat source, triggered by changes in the electronic density of states (DOS) at the Fermi level when external gate fields are applied on the outer graphene layers. We demonstrate that entropy changes are sensitive to the stacking arrangement in TLG systems. The AAA-stacked TLG presents an inverse EC response (cooling) regardless of the temperature value and gate field potential strength, whereas the EC effect in ABC-stacked TLG remains direct (heating) above room temperature. We reveal otherwise the TLG with Bernal-ABA stacking generates both the direct and inverse EC response within the same sample, associated with gate-dependent electronic transitions of thermally excited charge carriers from the valence band to the conduction band in the band structure. The novel charge carrier electrocaloric effect we propose in quantum layered systems may bring a wide variety of prototype van der Waals materials that could be used as versatile platforms to controlling the thermal response in nanodevices.

5.
Mol Ther Methods Clin Dev ; 23: 286-295, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34729376

RESUMEN

Targeting host factors for anti-viral development offers several potential advantages over traditional countermeasures that include broad-spectrum activity and prevention of resistance. Characterization of host factors in animal models provides strong evidence of their involvement in disease pathogenesis, but the feasibility of performing high-throughput in vivo analyses on lists of genes is problematic. To begin addressing the challenges of screening candidate host factors in vivo, we combined advances in CRISPR-Cas9 genome editing with an immunocompromised mouse model used to study highly pathogenic viruses. Transgenic mice harboring a constitutively expressed Cas9 allele (Cas9 tg/tg ) with or without knockout of type I interferon receptors served to optimize in vivo delivery of CRISPR single-guide RNA (sgRNA) using Invivofectamine 3.0, a simple and easy-to-use lipid nanoparticle reagent. Invivofectamine 3.0-mediated liver-specific editing to remove activity of the critical Ebola virus host factor Niemann-Pick disease type C1 in an average of 74% of liver cells protected immunocompromised Cas9 tg/tg mice from lethal surrogate Ebola virus infection. We envision that immunocompromised Cas9 tg/tg mice combined with straightforward sgRNA in vivo delivery will enable efficient host factor loss-of-function screening in the liver and other organs to rapidly study their effects on viral pathogenesis and help initiate development of broad-spectrum, host-directed therapies against emerging pathogens.

6.
Langmuir ; 37(41): 12089-12097, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609882

RESUMEN

The COVID-19 pandemic has claimed millions of lives worldwide, sickened many more, and has resulted in severe socioeconomic consequences. As society returns to normal, understanding the spread and persistence of SARS CoV-2 on commonplace surfaces can help to mitigate future outbreaks of coronaviruses and other pathogens. We hypothesize that such an understanding can be aided by studying the binding and interaction of viral proteins with nonbiological surfaces. Here, we propose a methodology for investigating the adhesion of the SARS CoV-2 spike glycoprotein on common inorganic surfaces such as aluminum, copper, iron, silica, and ceria oxides as well as metallic gold. Quantitative adhesion was obtained from the analysis of measured forces at the nanoscale using an atomic force microscope operated under ambient conditions. Without imposing further constraints on the measurement conditions, our preliminary findings suggest that spike glycoproteins interact with similar adhesion forces across the majority of the metal oxides tested with the exception to gold, for which attraction forces ∼10 times stronger than all other materials studied were observed. Ferritin, which was used as a reference protein, was found to exhibit similar adhesion forces as SARS CoV-2 spike protein. This study results show that glycoprotein adhesion forces for similar ambient humidity, tip shape, and contact surface are nonspecific to the properties of metal oxide surfaces, which are expected to be covered by a thin water film. The findings suggest that under ambient conditions, glycoprotein adhesion to metal oxides is primarily controlled by the water capillary forces, and they depend on the surface tension of the liquid water. We discuss further strategies warranted to decipher the intricate nanoscale forces for improved quantification of the adhesion.


Asunto(s)
COVID-19 , Humanos , Microscopía de Fuerza Atómica , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Propiedades de Superficie
7.
Entropy (Basel) ; 23(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34441159

RESUMEN

Beyond the usual ferromagnetic and paramagnetic phases present in spin systems, the usual q-state clock model presents an intermediate vortex state when the number of possible orientations q for the system is greater than or equal to 5. Such vortex states give rise to the Berezinskii-Kosterlitz-Thouless (BKT) phase present up to the XY model in the limit q→∞. Based on information theory, we present here an analysis of the classical order parameters plus new short-range parameters defined here. Thus, we show that even using the first nearest neighbors spin-spin correlations only, it is possible to distinguish the two transitions presented by this system for q greater than or equal to 5. Moreover, the appearance at relatively low temperature and disappearance of the BKT phase at a rather fix higher temperature is univocally determined by the short-range interactions recognized by the information content of classical and new parameters.

8.
MAbs ; 13(1): 1958663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34348076

RESUMEN

The respiratory virus responsible for coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected nearly every aspect of life worldwide, claiming the lives of over 3.9 million people globally, at the time of this publication. Neutralizing humanized nanobody (VHH)-based antibodies (VHH-huFc) represent a promising therapeutic intervention strategy to address the current SARS-CoV-2 pandemic and provide a powerful toolkit to address future virus outbreaks. Using a synthetic, high-diversity VHH bacteriophage library, several potent neutralizing VHH-huFc antibodies were identified and evaluated for their capacity to tightly bind to the SARS-CoV-2 receptor-binding domain, to prevent binding of SARS-CoV-2 spike (S) to the cellular receptor angiotensin-converting enzyme 2, and to neutralize viral infection. Preliminary preclinical evaluation of multiple VHH-huFc antibody candidates demonstrate that they are prophylactically and therapeutically effective in vivo against wildtype SARS-CoV-2. The identified and characterized VHH-huFc antibodies described herein represent viable candidates for further preclinical evaluation and another tool to add to our therapeutic arsenal to address the COVID-19 pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Humanos
9.
Front Mol Biosci ; 8: 678701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327214

RESUMEN

A rapid response is necessary to contain emergent biological outbreaks before they can become pandemics. The novel coronavirus (SARS-CoV-2) that causes COVID-19 was first reported in December of 2019 in Wuhan, China and reached most corners of the globe in less than two months. In just over a year since the initial infections, COVID-19 infected almost 100 million people worldwide. Although similar to SARS-CoV and MERS-CoV, SARS-CoV-2 has resisted treatments that are effective against other coronaviruses. Crystal structures of two SARS-CoV-2 proteins, spike protein and main protease, have been reported and can serve as targets for studies in neutralizing this threat. We have employed molecular docking, molecular dynamics simulations, and machine learning to identify from a library of 26 million molecules possible candidate compounds that may attenuate or neutralize the effects of this virus. The viability of selected candidate compounds against SARS-CoV-2 was determined experimentally by biolayer interferometry and FRET-based activity protein assays along with virus-based assays. In the pseudovirus assay, imatinib and lapatinib had IC50 values below 10 µM, while candesartan cilexetil had an IC50 value of approximately 67 µM against Mpro in a FRET-based activity assay. Comparatively, candesartan cilexetil had the highest selectivity index of all compounds tested as its half-maximal cytotoxicity concentration 50 (CC50) value was the only one greater than the limit of the assay (>100 µM).

11.
Entropy (Basel) ; 22(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-33286527

RESUMEN

In this paper, we analyze the total work extracted and the efficiency of the magnetic Otto cycle in its classic and quantum versions. As a general result, we found that the work and efficiency of the classical engine is always greater than or equal to its quantum counterpart, independent of the working substance. In the classical case, this is due to the fact that the working substance is always in thermodynamic equilibrium at each point of the cycle, maximizing the energy extracted in the adiabatic paths. We apply this analysis to the case of a two-level system, finding that the work and efficiency in both the Otto's quantum and classical cycles are identical, regardless of the working substance, and we obtain similar results for a multilevel system where a linear relationship between the spectrum of energies of the working substance and the external magnetic field is fulfilled. Finally, we show an example of a three-level system in which we compare two zones in the entropy diagram as a function of temperature and magnetic field to find which is the most efficient region when performing a thermodynamic cycle. This work provides a practical way to look for temperature and magnetic field zones in the entropy diagram that can maximize the power extracted from an Otto magnetic engine.

12.
Acta Biomater ; 114: 358-368, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32702530

RESUMEN

CRISPR gene editing technology is strategically foreseen to control diseases by correcting underlying aberrant genetic sequences. In order to overcome drawbacks associated with viral vectors, the establishment of an effective non-viral CRISPR delivery vehicle has become an important goal for nanomaterial scientists. Herein, we introduce a monosized lipid-coated mesoporous silica nanoparticle (LC-MSN) delivery vehicle that enables both loading of CRISPR components [145 µg ribonucleoprotein (RNP) or 40 µg plasmid/mg nanoparticles] and efficient release within cancer cells (70%). The RNP-loaded LC-MSN exhibited 10% gene editing in both in vitro reporter cancer cell lines and in an in vivo Ai9-tdTomato reporter mouse model. The structural and chemical versatility of the mesoporous silica core and lipid coating along with framework dissolution-assisted cargo delivery open new prospects towards safe CRISPR component delivery and enhanced gene editing. STATEMENT OF SIGNIFICANCE: After the discovery of CRISPR gene-correcting technology in bacteria. The translation of this technology to mammalian cells may change the face of cancer therapy within the next years. This was first made possible through the use of viral vectors; however, such systems limit the safe translation of CRISPR into clinics because its difficult preparation and immunogenicity. Therefore, biocompatible non-viral nanoparticulate systems are required to successfully deliver CRISPR into cancer cells. The present study presents the use of biomimetic lipid-coated mesoporous silica nanoparticles showing successful delivery of CRISPR ribonucleoprotein and plasmid into HeLa cervical and A549 lung cancer cells as well as successful gene editing in mice brain.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Humanos , Membrana Dobles de Lípidos , Ratones
13.
Entropy (Basel) ; 21(5)2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33267226

RESUMEN

We studied the performance of classical and quantum magnetic Otto cycle with a working substance composed of a single quantum dot using the Fock-Darwin model with the inclusion of the Zeeman interaction. Modulating an external/perpendicular magnetic field, in the classical approach, we found an oscillating behavior in the total work extracted that was not present in the quantum formulation.We found that, in the classical approach, the engine yielded a greater performance in terms of total work extracted and efficiency than when compared with the quantum approach. This is because, in the classical case, the working substance can be in thermal equilibrium at each point of the cycle, which maximizes the energy extracted in the adiabatic strokes.

14.
Sci Rep ; 8(1): 13990, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228359

RESUMEN

Venezuelan equine encephalitis virus (VEEV) poses a major public health risk due to its amenability for use as a bioterrorism agent and its severe health consequences in humans. ML336 is a recently developed chemical inhibitor of VEEV, shown to effectively reduce VEEV infection in vitro and in vivo. However, its limited solubility and stability could hinder its clinical translation. To overcome these limitations, lipid-coated mesoporous silica nanoparticles (LC-MSNs) were employed. The large surface area of the MSN core promotes hydrophobic drug loading while the liposome coating retains the drug and enables enhanced circulation time and biocompatibility, providing an ideal ML336 delivery platform. LC-MSNs loaded 20 ± 3.4 µg ML336/mg LC-MSN and released 6.6 ± 1.3 µg/mg ML336 over 24 hours. ML336-loaded LC-MSNs significantly inhibited VEEV in vitro in a dose-dependent manner as compared to unloaded LC-MSNs controls. Moreover, cell-based studies suggested that additional release of ML336 occurs after endocytosis. In vivo safety studies were conducted in mice, and LC-MSNs were not toxic when dosed at 0.11 g LC-MSNs/kg/day for four days. ML336-loaded LC-MSNs showed significant reduction of brain viral titer in VEEV infected mice compared to PBS controls. Overall, these results highlight the utility of LC-MSNs as drug delivery vehicles to treat VEEV.


Asunto(s)
Infecciones por Alphavirus/prevención & control , Alphavirus/patogenicidad , Benzamidas/farmacología , Sistemas de Liberación de Medicamentos , Encefalitis Viral/prevención & control , Nanopartículas/administración & dosificación , Piperazinas/farmacología , Dióxido de Silicio/química , Infecciones por Alphavirus/virología , Animales , Antivirales/farmacología , Encefalitis Viral/virología , Células HeLa , Humanos , Ratones , Ratones Endogámicos C3H , Nanopartículas/química , Porosidad
15.
Elife ; 72018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29303478

RESUMEN

Double-stranded DNA (dsDNA) binding and cleavage by Cas9 is a hallmark of type II CRISPR-Cas bacterial adaptive immunity. All known Cas9 enzymes are thought to recognize DNA exclusively as a natural substrate, providing protection against DNA phage and plasmids. Here, we show that Cas9 enzymes from both subtypes II-A and II-C can recognize and cleave single-stranded RNA (ssRNA) by an RNA-guided mechanism that is independent of a protospacer-adjacent motif (PAM) sequence in the target RNA. RNA-guided RNA cleavage is programmable and site-specific, and we find that this activity can be exploited to reduce infection by single-stranded RNA phage in vivo. We also demonstrate that Cas9 can direct PAM-independent repression of gene expression in bacteria. These results indicate that a subset of Cas9 enzymes have the ability to act on both DNA and RNA target sequences, and suggest the potential for use in programmable RNA targeting applications.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Marcación de Gen/métodos , ARN/genética , ARN/metabolismo , Recombinación Genética , Hidrólisis , ARN Guía de Kinetoplastida/metabolismo
16.
Entropy (Basel) ; 20(8)2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-33265646

RESUMEN

In this work, we report the magnetocaloric effect (MCE) in two systems of non-interactive particles: the first corresponds to the Landau problem case and the second the case of an electron in a quantum dot subjected to a parabolic confinement potential. In the first scenario, we realize that the effect is totally different from what happens when the degeneracy of a single electron confined in a magnetic field is not taken into account. In particular, when the degeneracy of the system is negligible, the magnetocaloric effect cools the system, while in the other case, when the degeneracy is strong, the system heats up. For the second case, we study the competition between the characteristic frequency of the potential trap and the cyclotron frequency to find the optimal region that maximizes the ΔT of the magnetocaloric effect, and due to the strong degeneracy of this problem, the results are in coherence with those obtained for the Landau problem. Finally, we consider the case of a transition from a normal MCE to an inverse one and back to normal as a function of temperature. This is due to the competition between the diamagnetic and paramagnetic response when the electron spin in the formulation is included.

17.
Entropy (Basel) ; 20(11)2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33266612

RESUMEN

In this work, we report the magnetocaloric effect (MCE) for an electron interacting with an antidot, under the effect of an Aharonov-Bohm flux (AB-flux) subjected to a parabolic confinement potential. We use the Bogachek and Landman model, which additionally allows the study of quantum dots with Fock-Darwin energy levels for vanishing antidot radius and AB-flux. We find that AB-flux strongly controls the oscillatory behaviour of the MCE, thus acting as a control parameter for the cooling or heating of the magnetocaloric effect. We propose a way to detect AB-flux by measuring temperature differences.

18.
Entropy (Basel) ; 20(12)2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33266657

RESUMEN

In this paper, we revisit the q-state clock model for small systems. We present results for the thermodynamics of the q-state clock model for values from q = 2 to q = 20 for small square lattices of L × L , with L ranging from L = 3 to L = 64 with free-boundary conditions. Energy, specific heat, entropy, and magnetization were measured. We found that the Berezinskii-Kosterlitz-Thouless (BKT)-like transition appears for q > 5, regardless of lattice size, while this transition at q = 5 is lost for L < 10; for q ≤ 4, the BKT transition is never present. We present the phase diagram in terms of q that shows the transition from the ferromagnetic (FM) to the paramagnetic (PM) phases at the critical temperature T 1 for small systems, and the transition changes such that it is from the FM to the BKT phase for larger systems, while a second phase transition between the BKT and the PM phases occurs at T 2. We also show that the magnetic phases are well characterized by the two-dimensional (2D) distribution of the magnetization values. We made use of this opportunity to carry out an information theory analysis of the time series obtained from Monte Carlo simulations. In particular, we calculated the phenomenological mutability and diversity functions. Diversity characterizes the phase transitions, but the phases are less detectable as q increases. Free boundary conditions were used to better mimic the reality of small systems (far from any thermodynamic limit). The role of size is discussed.

19.
PLoS One ; 12(9): e0185308, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28953976

RESUMEN

Tacaribe virus (TCRV) was isolated in the 1950s from artibeus bats captured on the island of Trinidad. The initial characterization of TCRV suggested that artibeus bats were natural reservoir hosts. However, nearly 60 years later experimental infections of Jamaican fruit bats (Artibeus jamaicensis) resulted in fatal disease or clearance, suggesting artibeus bats may not be a reservoir host. To further evaluate the TCRV reservoir host status of artibeus bats, we captured bats of six species in Trinidad for evidence of infection. Bats of all four fruigivorous species captured had antibodies to TCRV nucleocapsid, whereas none of the insectivore or nectarivore species did. Many flat-faced fruit-eating bats (A. planirostris) and great fruit-eating bats (A. literatus) were seropositive by ELISA and western blot to TCRV nucleocapsid antigen, as were two of four Seba's fruit bats (Carollia perspicillata) and two of three yellow-shouldered fruit bats (Sturnira lilium). Serum neutralization tests failed to detect neutralizing antibodies to TCRV from these bats. TCRV RNA was not detected in lung tissues or lung homogenates inoculated onto Vero cells. These data indicate that TCRV or a similar arenavirus continues to circulate among fruit bats of Trinidad but there was no evidence of persistent infection, suggesting artibeus bats are not reservoir hosts.


Asunto(s)
Arenavirus/fisiología , Quirópteros/sangre , Quirópteros/virología , Pruebas Serológicas , Animales , Arenavirus/aislamiento & purificación , Geografía , Estudios Seroepidemiológicos , Trinidad y Tobago
20.
Urology ; 110: 56-62, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28882781

RESUMEN

OBJECTIVE: To evaluate patients' characteristics, surgical procedure data, and outcomes of ureterorenoscopy (URS) stone treatment in patients with a horseshoe kidney (HSK), ectopic kidney (EK), and malrotated kidney (MK). MATERIALS AND METHODS: This study is a subanalysis of the Clinical Research Office of the Endourological Society URS Global Study, which was a prospective multicenter observational study, collecting data on URS stone treatment from consecutive patients over a 1-year period. A total of 114 centers in 32 countries participated. This analysis acuminated on URS stone treatment in the specified renal anomalies: HSK, EK, and MK. For each group, patient characteristics, operation data, and treatment outcomes were evaluated. RESULTS: Of the 11,885 patients included in the Clinical Research Office of the Endourological Society URS study, 43 patients had HSK, 27 EK, and 16 MK. The stone-free rate (SFR) in the HSK group was 77% for renal stones and 85% for ureteral stones. In the HSK group, the intraoperative complication rate was 11.6% and the postoperative complication rate was 7%, including 1 Clavien grade IIIa and 1 IIIb complication. In the EK group, the SFR was 20% for renal stones and 94% for ureteral stones, with an intraoperative complication rate of 14.8% and a postoperative complication rate of 7.4%. One Clavien IVa complication was reported. In the MK group, the SFR was 71% for renal stones and 88% for ureteral stones, with an intraoperative complication rate of 6.3%. No postoperative complications occurred in this group. CONCLUSION: URS is an effective and safe treatment modality to remove ureteral and renal stones in patients with HSK and MK. The effectiveness of URS for renal stones in EK was low.


Asunto(s)
Cálculos Renales/complicaciones , Cálculos Renales/cirugía , Riñón/anomalías , Cálculos Ureterales/complicaciones , Cálculos Ureterales/cirugía , Ureteroscopía , Femenino , Riñón Fusionado/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...