Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Protein Chem Struct Biol ; 138: 67-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38220433

RESUMEN

Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.


Asunto(s)
Biosíntesis de Proteínas , Proteómica , Animales , Humanos , Mamíferos , Isoformas de Proteínas/genética
2.
Nucleic Acids Res ; 50(16): 9490-9504, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35971611

RESUMEN

Protein synthesis in eukaryotic cell is spatially and structurally compartmentalized that ensures high efficiency of this process. One of the distinctive features of higher eukaryotes is the existence of stable multi-protein complexes of aminoacyl-tRNA synthetases and translation elongation factors. Here, we report a quaternary organization of the human guanine-nucleotide exchange factor (GEF) complex, eEF1B, comprising α, ß and γ subunits that specifically associate into a heterotrimeric form eEF1B(αßγ)3. As both the eEF1Bα and eEF1Bß proteins have structurally conserved GEF domains, their total number within the complex is equal to six. Such, so far, unique structural assembly of the guanine-nucleotide exchange factors within a stable complex may be considered as a 'GEF hub' that ensures efficient maintenance of the translationally active GTP-bound conformation of eEF1A in higher eukaryotes.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Factor 1 de Elongación Peptídica , Humanos , Factor 1 de Elongación Peptídica/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Biosíntesis de Proteínas , Nucleótidos/metabolismo , Guanina
3.
Int J Biol Macromol ; 126: 899-907, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590147

RESUMEN

Translation elongation factor 1Bß (eEF1Bß) is a metazoan-specific protein involved into the macromolecular eEF1B complex, containing also eEF1Bα and eEF1Bγ subunits. Both eEF1Bα and eEF1Bß ensure the guanine nucleotide exchange on eEF1A while eEF1Bγ is thought to have a structural role. The structures of the eEF1Bß catalytic C-terminal domain and neighboring central acidic region are known while the structure of the protein-binding N-terminal domain remains unidentified which prevents clear understanding of architecture of the eEF1B complex. Here we show that the N-terminal domain comprising initial 77 amino acids of eEF1Bß, eEF1Bß(1-77), is a monomer in solution with increased hydrodynamic volume. This domain binds eEF1Bγ in equimolar ratio. The CD spectra reveal that the secondary structure of eEF1Bß(1-77) consists predominantly of α-helices and a portion of disordered region. Very rapid hydrogen/deuterium exchange for all eEF1Bß(1-77) peptides favors a flexible tertiary organization of eEF1Bß(1-77). Computational modeling of eEF1Bß(1-77) suggests several conformation states each composed of three α-helices connected by flexible linkers. Altogether, the data imply that the protein-binding domain of eEF1Bß shows flexible spatial organization which may be needed for interaction with eEF1Bγ or other protein partners.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , Factores de Intercambio de Guanina Nucleótido/aislamiento & purificación , Humanos , Modelos Moleculares , Factor 1 de Elongación Peptídica/aislamiento & purificación , Péptidos/química , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Proteínas Recombinantes/aislamiento & purificación , Reproducibilidad de los Resultados , Relación Estructura-Actividad
4.
FEBS J ; 283(3): 484-97, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26587907

RESUMEN

Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Nucleótidos/metabolismo , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Humanos , Datos de Secuencia Molecular , Nucleótidos/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
5.
FEBS Lett ; 589(11): 1187-93, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25862498

RESUMEN

Translation elongation factor eEF1A is a G-protein which has a crucial role in the ribosomal polypeptide elongation and possesses a number of non-translational functions. Here, we show that the A,A(∗),A' helices segment of mammalian eEF1A is dispensable for the eEF1A*eEF1Bα complex formation. The A,A(∗),A' helices region did not interact with actin; however, its removal eliminates the actin bundling activity of eEF1A, probably due to the destruction of a dimeric structure of eEF1A. The translation function of monomers and the actin-bundling function of dimers of mammalian eEF1A is suggested.


Asunto(s)
Secuencia de Aminoácidos , Factor 1 de Elongación Peptídica/química , Multimerización de Proteína , Eliminación de Secuencia , Actinas/química , Actinas/genética , Actinas/metabolismo , Animales , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Conejos
6.
Nucleic Acids Res ; 42(20): 12939-48, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25326326

RESUMEN

Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the 'GTP'- and 'GDP'-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis.


Asunto(s)
Guanosina Difosfato/química , Guanosina Trifosfato/química , Factor 1 de Elongación Peptídica/química , Animales , Cristalografía por Rayos X , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Magnesio/química , Modelos Moleculares , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Conejos
7.
Biochemistry ; 52(32): 5345-53, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23859436

RESUMEN

Translation elongation factor 1A (eEF1A) directs aminoacyl-tRNA to the A site of 80S ribosomes. In addition, more than 97% homologous variants of eEF1A, A1 and A2, whose expression in different tissues is mutually exclusive, may fulfill a number of independent moonlighting functions in the cell; for instance, the unusual appearance of A2 in an A1-expressing tissue was recently linked to the induction of carcinogenesis. The structural background explaining the different functional performance of the highly homologous proteins is unclear. Here, the main difference in the structural properties of these proteins was revealed to be the improved ability of A1 to self-associate, as demonstrated by synchrotron small-angle X-ray scattering (SAXS) and analytical ultracentrifugation. Besides, the SAXS measurements at different urea concentrations revealed the low resistance of the A1 protein to urea. Titration of the proteins by hydrophobic dye 8-anilino-1-naphthalenesulfonate showed that the A1 isoform is more hydrophobic than A2. As the different association properties, lipophilicity, and stability of the highly similar eEF1A variants did not influence considerably their translation functions, at least in vitro, we suggest this difference may indicate a structural background for isoform-specific moonlighting roles.


Asunto(s)
Factor 1 de Elongación Peptídica/química , Secuencia de Aminoácidos , Naftalenosulfonatos de Anilina/química , Naftalenosulfonatos de Anilina/metabolismo , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Aminoacil-ARN de Transferencia/metabolismo , Conejos , Ribosomas/metabolismo , Dispersión del Ángulo Pequeño , Propiedades de Superficie
8.
BMC Struct Biol ; 8: 4, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18221514

RESUMEN

BACKGROUND: Eukaryotic translation elongation factor eEF1A directs the correct aminoacyl-tRNA to ribosomal A-site. In addition, eEF1A is involved in carcinogenesis and apoptosis and can interact with large number of non-translational ligands. There are two isoforms of eEF1A, which are 98% similar. Despite the strong similarity, the isoforms differ in some properties. Importantly, the appearance of eEF1A2 in tissues in which the variant is not normally expressed can be coupled to cancer development.We reasoned that the background for the functional difference of eEF1A1 and eEF1A2 might lie in changes of dynamics of the isoforms. RESULTS: It has been determined by multiple MD simulation that eEF1A1 shows increased reciprocal flexibility of structural domains I and II and less average distance between the domains, while increased non-correlated diffusive atom motions within protein domains characterize eEF1A2. The divergence in the dynamic properties of eEF1A1 and eEF1A2 is caused by interactions of amino acid residues that differ between the two variants with neighboring residues and water environment. The main correlated motion of both protein isoforms is the change in proximity of domains I and II which can lead to disappearance of the gap between the domains and transition of the protein into a "closed" conformation. Such a transition is reversible and the protein can adopt an "open" conformation again. This finding is in line with our earlier experimental observation that the transition between "open" and "closed" conformations of eEF1A could be essential for binding of tRNA and/or other biological ligands. The putative calmodulin-binding region Asn311-Gly327 is less flexible in eEF1A1 implying its increased affinity for calmodulin. The ability of eEF1A1 rather than eEF1A2 to interact with Ca2+/calmodulin is shown experimentally in an ELISA-based test. CONCLUSION: We have found that reversible transitions between "open" and "close" conformations of eEF1A provide a molecular background for the earlier observation that the eEF1A molecule is able to change the shape upon interaction with tRNA. The ability of eEF1A1 rather than eEF1A2 to interact with calmodulin is predicted by MD analysis and showed experimentally. The differential ability of the eEF1A isoforms to interact with signaling molecules discovered in this study could be associated with cancer-related properties of eEF1A2.


Asunto(s)
Calmodulina/metabolismo , Factor 1 de Elongación Peptídica/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/química , Calmodulina/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/metabolismo , Conformación Proteica , Isoformas de Proteínas/química , Estructura Terciaria de Proteína , Alineación de Secuencia
9.
Eur J Biochem ; 269(19): 4811-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12354112

RESUMEN

Multimolecular complexes involving the eukaryotic elongation factor 1A (eEF1A) have been suggested to play an important role in the channeling (vectorial transfer) of tRNA during protein synthesis [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. Mol. Biol. 60, 47-78]. Recently we have demonstrated that besides performing its canonical function of forming a ternary complex with GTP and aminoacyl-tRNA, the mammalian eEF1A can produce a noncanonical ternary complex with GDP and uncharged tRNA [Petrushenko, Z.M., Negrutskii, B.S., Ladokhin, A.S., Budkevich, T.V., Shalak, V.F. & El'skaya, A.V. (1997) FEBS Lett. 407, 13-17]. The [eEF1A.GDP.tRNA] complex has been hypothesized to interact with aminoacyl-tRNA synthetase (ARS) resulting in a quaternary complex where uncharged tRNA is transferred to the enzyme for aminoacylation. Here we present the data on association of the [eEF1A.GDP.tRNA] complex with phenylalanyl-tRNA synthetase (PheRS), e.g. the formation of the above quaternary complex detected by the gel-retardation and surface plasmon resonance techniques. To estimate the stability of the novel ternary and quaternary complexes of eEF1A the fluorescence method and BIAcore analysis were used. The dissociation constants for the [eEF1A.GDP.tRNA] and [eEF1A.GDP.tRNAPhe.PheRS] complexes were found to be 20 nm and 9 nm, respectively. We also revealed a direct interaction of PheRS with eEF1A in the absence of tRNAPhe (Kd = 21 nm). However, the addition of tRNAPhe accelerated eEF1A.GDP binding to the enzyme. A possible role of these stable novel ternary and quaternary complexes of eEF1A.GDP with tRNA and ARS in the channeled elongation cycle is discussed.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Animales , Estabilidad de Medicamentos , Técnicas In Vitro , Cinética , Sustancias Macromoleculares , Modelos Biológicos , Extensión de la Cadena Peptídica de Translación , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Conejos , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...