Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39147208

RESUMEN

PURPOSE: Conventional normal tissue complication probability (NTCP) models for patients with head and neck cancer are typically based on single-value variables, which, for radiation-induced xerostomia, are baseline xerostomia and mean salivary gland doses. This study aimed to improve the prediction of late xerostomia by using 3-dimensional information from radiation dose distributions, computed tomography imaging, organ-at-risk segmentations, and clinical variables with deep learning (DL). METHODS AND MATERIALS: An international cohort of 1208 patients with head and neck cancer from 2 institutes was used to train and twice validate DL models (deep convolutional neural network, EfficientNet-v2, and ResNet) with 3-dimensional dose distribution, computed tomography scan, organ-at-risk segmentations, baseline xerostomia score, sex, and age as input. The NTCP endpoint was moderate-to-severe xerostomia 12 months postradiation therapy. The DL models' prediction performance was compared with a reference model: a recently published xerostomia NTCP model that used baseline xerostomia score and mean salivary gland doses as input. Attention maps were created to visualize the focus regions of the DL predictions. Transfer learning was conducted to improve the DL model performance on the external validation set. RESULTS: All DL-based NTCP models showed better performance (area under the receiver operating characteristic curve [AUC]test, 0.78-0.79) than the reference NTCP model (AUCtest, 0.74) in the independent test. Attention maps showed that the DL model focused on the major salivary glands, particularly the stem cell-rich region of the parotid glands. DL models obtained lower external validation performance (AUCexternal, 0.63) than the reference model (AUCexternal, 0.66). After transfer learning on a small external subset, the DL model (AUCtl, external, 0.66) performed better than the reference model (AUCtl, external, 0.64). CONCLUSION: DL-based NTCP models performed better than the reference model when validated in data from the same institute. Improved performance in the external data set was achieved with transfer learning, demonstrating the need for multicenter training data to realize generalizable DL-based NTCP models.

2.
Med Phys ; 48(10): 5674-5683, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289123

RESUMEN

PURPOSE: To ensure target coverage in the treatment of esophageal cancer, a density override to the region of diaphragm motion can be applied in the optimization process. Here, we evaluate the benefit of this approach during robust optimization for intensity modulated proton therapy (IMPT) planning. MATERIALS AND METHODS: For 10 esophageal cancer patients, two robustly optimized IMPT plans were created either using (WDO) or not using (NDO) a diaphragm density override of 1.05 g/cm3 during plan optimization. The override was applied to the excursion of the diaphragm between exhale and inhale. Initial robustness evaluation was performed for plan acceptance (setup errors of 8 mm, range errors of ±3%), and subsequently, on all weekly repeated 4DCTs (setup errors of 2 mm, range errors of ±3%). Target coverage and hotspots were analyzed on the resulting voxel-wise minimum (Vwmin ) and voxel-wise maximum (Vwmax ) dose distributions. RESULTS: The nominal dose distributions were similar for both WDO and NDO plans. However, visual inspection of the Vwmax of the WDO plans showed hotspots behind the right diaphragm override region. For one patient, target coverage and hotspots improved by applying the diaphragm override. We found no differences in target coverage in the weekly evaluations between the two approaches. CONCLUSION: The diaphragm override approach did not result in a clinical benefit in terms of planning and interfractional robustness. Therefore, we do not see added value in employing this approach as a default option during robust optimization for IMPT planning in esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Neoplasias Pulmonares , Terapia de Protones , Radioterapia de Intensidad Modulada , Diafragma/diagnóstico por imagen , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/radioterapia , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA