Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunol Rev ; 323(1): 209-226, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491845

RESUMEN

Microglia, the major population of brain-resident macrophages, are now recognized as a heterogeneous population comprising several cell subtypes with different (so far mostly supposed) functions in health and disease. A number of studies have performed molecular characterization of these different microglial activation states over the last years making use of "omics" technologies, that is transcriptomics, proteomics and, less frequently, epigenomics profiling. These approaches offer the possibility to identify disease mechanisms, discover novel diagnostic biomarkers, and develop new therapeutic strategies. Here, we focus on epigenetic profiling as a means to understand microglial immune responses beyond what other omics methods can offer, that is, revealing past and present molecular responses, gene regulatory networks and potential future response trajectories, and defining cell subtype-specific disease relevance through mapping non-coding genetic variants. We review the current knowledge in the field regarding epigenetic regulation of microglial identity and function, provide an exemplary analysis that demonstrates the advantages of performing joint transcriptomic and epigenomic profiling of single microglial cells and discuss how comprehensive epigenetic analyses may enhance our understanding of microglial pathophysiology.


Asunto(s)
Epigénesis Genética , Microglía , Microglía/inmunología , Microglía/metabolismo , Humanos , Animales , Epigenómica/métodos , Transcriptoma , Inmunidad/genética , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Encéfalo/inmunología , Encéfalo/metabolismo
2.
Methods Mol Biol ; 2713: 543-571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639146

RESUMEN

The advance of single-cell RNA-sequencing technologies in the past years has enabled unprecedented insights into the complexity and heterogeneity of microglial cell states in the homeostatic and diseased brain. This includes rather complex proteomic, metabolomic, morphological, transcriptomic, and epigenetic adaptations to external stimuli and challenges resulting in a novel concept of core microglia properties and functions. To uncover the regulatory programs facilitating the rapid transcriptomic adaptation in response to changes in the local microenvironment, the accessibility of gene bodies and gene regulatory elements can be assessed. Here, we describe the application of a previously published method for simultaneous high-throughput ATAC and RNA expression with sequencing (SHARE-seq) on microglia nuclei isolated from frozen mouse brain tissue.


Asunto(s)
Cromatina , Microglía , Animales , Ratones , Cromatina/genética , Proteómica , ARN Mensajero/genética , ARN
4.
Cell Mol Life Sci ; 80(4): 98, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36932186

RESUMEN

The development and survival of adult-born neurons are believed to be driven by sensory signaling. Here, in vivo analyses of motility, morphology and Ca2+ signaling, as well as transcriptome analyses of adult-born juxtaglomerular cells with reduced endogenous excitability (via cell-specific overexpression of either Kv1.2 or Kir2.1 K+ channels), revealed a pronounced impairment of migration, morphogenesis, survival, and functional integration of these cells into the mouse olfactory bulb, accompanied by a reduction in cytosolic Ca2+ fluctuations, phosphorylation of CREB and pCREB-mediated gene expression. Moreover, K+ channel overexpression strongly downregulated genes involved in neuronal migration, differentiation, and morphogenesis and upregulated apoptosis-related genes, thus locking adult-born cells in an immature and vulnerable state. Surprisingly, cells deprived of sensory-driven activity developed normally. Together, the data reveal signaling pathways connecting the endogenous intermittent neuronal activity/Ca2+ fluctuations as well as enhanced Kv1.2/Kir2.1 K+ channel function to migration, maturation, and survival of adult-born neurons.


Asunto(s)
Neuronas , Bulbo Olfatorio , Ratones , Animales , Bulbo Olfatorio/metabolismo , Neuronas/metabolismo , Neurogénesis/genética , Diferenciación Celular , Movimiento Celular
5.
Nature ; 612(7938): 123-131, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385530

RESUMEN

Aggregates of medin amyloid (a fragment of the protein MFG-E8, also known as lactadherin) are found in the vasculature of almost all humans over 50 years of age1,2, making it the most common amyloid currently known. We recently reported that medin also aggregates in blood vessels of ageing wild-type mice, causing cerebrovascular dysfunction3. Here we demonstrate in amyloid-ß precursor protein (APP) transgenic mice and in patients with Alzheimer's disease that medin co-localizes with vascular amyloid-ß deposits, and that in mice, medin deficiency reduces vascular amyloid-ß deposition by half. Moreover, in both the mouse and human brain, MFG-E8 is highly enriched in the vasculature and both MFG-E8 and medin levels increase with the severity of vascular amyloid-ß burden. Additionally, analysing data from 566 individuals in the ROSMAP cohort, we find that patients with Alzheimer's disease have higher MFGE8 expression levels, which are attributable to vascular cells and are associated with increased measures of cognitive decline, independent of plaque and tau pathology. Mechanistically, we demonstrate that medin interacts directly with amyloid-ß to promote its aggregation, as medin forms heterologous fibrils with amyloid-ß, affects amyloid-ß fibril structure, and cross-seeds amyloid-ß aggregation both in vitro and in vivo. Thus, medin could be a therapeutic target for prevention of vascular damage and cognitive decline resulting from amyloid-ß deposition in the blood vessels of the brain.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animales , Humanos , Ratones , Persona de Mediana Edad , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunción Cognitiva , Ratones Transgénicos , Placa Amiloide/metabolismo , Proteínas tau/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(24): e2119804119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666874

RESUMEN

Single-cell transcriptomics has revealed specific glial activation states associated with the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. While these findings may eventually lead to new therapeutic opportunities, little is known about how these glial responses are reflected by biomarker changes in bodily fluids. Such knowledge, however, appears crucial for patient stratification, as well as monitoring disease progression and treatment responses in clinical trials. Here, we took advantage of well-described mouse models of ß-amyloidosis and α-synucleinopathy to explore cerebrospinal fluid (CSF) proteome changes related to their respective proteopathic lesions. Nontargeted liquid chromatography-mass spectrometry revealed that the majority of proteins that undergo age-related changes in CSF of either mouse model were linked to microglia and astrocytes. Specifically, we identified a panel of more than 20 glial-derived proteins that were increased in CSF of aged ß-amyloid precursor protein- and α-synuclein-transgenic mice and largely overlap with previously described disease-associated glial genes identified by single-cell transcriptomics. Our results also show that enhanced shedding is responsible for the increase of several of the identified glial CSF proteins as exemplified for TREM2. Notably, the vast majority of these proteins can also be quantified in human CSF and reveal changes in Alzheimer's disease cohorts. The finding that cellular transcriptome changes translate into corresponding changes of CSF proteins is of clinical relevance, supporting efforts to identify fluid biomarkers that reflect the various functional states of glial responses in cerebral proteopathies, such as Alzheimer's and Parkinson's disease.


Asunto(s)
Enfermedad de Alzheimer , Líquido Cefalorraquídeo , Neuroglía , Enfermedad de Parkinson , Proteoma , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Animales , Biomarcadores/líquido cefalorraquídeo , Líquido Cefalorraquídeo/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Neuroglía/metabolismo , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/metabolismo , Proteoma/metabolismo , Análisis de la Célula Individual , Proteínas tau
7.
Immunity ; 55(5): 821-823, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545031

RESUMEN

Although consistently implicated, the exact role of interferon (IFN) signaling in Alzheimer's disease remains largely unexplored. Roy et al. now demonstrate that type I IFNs may drive cognitive dysfunction through acting not only on microglia but, surprisingly, also on neurons.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Humanos , Microglía , Neuronas , Transducción de Señal/fisiología
8.
J Neurochem ; 159(3): 525-542, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34379806

RESUMEN

Sepsis-associated encephalopathy (SAE) represents diverse cerebral dysfunctions in response to pathogen-induced systemic inflammation. Peripheral exposure to lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall, has been extensively used to model systemic inflammation. Our previous studies suggested that LPS led to hippocampal neuron death and synaptic destruction in vivo. However, the underlying roles of activated microglia in these neuronal changes remained unclear. Here, LPS from two different bacterial strains (Salmonella enterica or E. coli) were compared and injected in 14- to 16-month-old mice and evaluated for neuroinflammation and neuronal integrity in the hippocampus at 7 or 63 days post-injection (dpi). LPS injection resulted in persistent neuroinflammation lasting for seven days and a subsequent normalisation by 63 dpi. Of note, increases in proinflammatory cytokines, microglial morphology and microglial mean lysosome volume were more pronounced after E. coli LPS injection than Salmonella LPS at 7 dpi. While inhibitory synaptic puncta density remained normal, excitatory synaptic puncta were locally reduced in the CA3 region of the hippocampus at 63 dpi. Finally, we provide evidence that excitatory synapses coated with complement factor 3 (C3) decreased between 7 dpi and 63 dpi. Although we did not find an increase of synaptic pruning by microglia, it is plausible that microglia recognised and eliminated these C3-tagged synapses between the two time points of investigation. Since a region-specific decline of CA3 synapses has previously been reported during normal ageing, we postulate that systemic inflammation may have accelerated or worsened the CA3 synaptic changes in the ageing brain.


Asunto(s)
Envejecimiento/patología , Región CA3 Hipocampal/patología , Inflamación/patología , Sinapsis/patología , Animales , Femenino , Inmunohistoquímica , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Salmonella , Sepsis/patología , Sinaptosomas/patología
9.
Nat Neurosci ; 24(6): 759-760, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958803
10.
Nature ; 590(7844): 44-45, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33473186
11.
Proc Natl Acad Sci U S A ; 117(38): 23925-23931, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900929

RESUMEN

Medin is the most common amyloid known in humans, as it can be found in blood vessels of the upper body in virtually everybody over 50 years of age. However, it remains unknown whether deposition of Medin plays a causal role in age-related vascular dysfunction. We now report that aggregates of Medin also develop in the aorta and brain vasculature of wild-type mice in an age-dependent manner. Strikingly, genetic deficiency of the Medin precursor protein, MFG-E8, eliminates not only vascular aggregates but also prevents age-associated decline of cerebrovascular function in mice. Given the prevalence of Medin aggregates in the general population and its role in vascular dysfunction with aging, targeting Medin may become a novel approach to sustain healthy aging.


Asunto(s)
Envejecimiento/metabolismo , Amiloide/metabolismo , Antígenos de Superficie/metabolismo , Proteínas de la Leche/metabolismo , Enfermedades Vasculares/metabolismo , Anciano de 80 o más Años , Amiloide/genética , Animales , Antígenos de Superficie/genética , Aorta/metabolismo , Aorta/patología , Química Encefálica/fisiología , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de la Leche/genética , Enfermedades Vasculares/patología
12.
EBioMedicine ; 60: 102989, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32920368

RESUMEN

BACKGROUND: Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells. METHODS: We selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including but not limited to migratory potential, trophic factor release and transcriptomic signature. To assess lesion-targeted migration and therapeutic properties of isolated subpopulations in vivo, surgical transplantation and intranasal administration of MSCs in mouse models of glioblastoma and Alzheimer's disease respectively were performed. FINDINGS: Comparison of parental non-selected cells with isolated subpopulations revealed superior motility and migratory potential of sMSC and sNSC in vitro. We identified podoplanin as a major regulator of migratory features of sMSC/sNSC. Podoplanin engineering improved oncovirolytic activity of virus-loaded NSC on distantly located glioblastoma cells. Finally, sMSC displayed more targeted migration to the tumour site in a mouse glioblastoma model and remarkably higher potency to reduce pathological hallmarks and memory deficits in transgenic Alzheimer's disease mice. INTERPRETATION: Functional heterogeneity of SC is associated with their motility and migration potential which can serve as predictors of SC therapeutic efficacy. FUNDING: This work was supported in part by the Robert Bosch Stiftung (Stuttgart, Germany) and by the IZEPHA grant.


Asunto(s)
Movimiento Celular , Células Madre/fisiología , Enfermedad de Alzheimer/terapia , Animales , Biomarcadores , Supervivencia Celular , Rastreo Celular/métodos , Células Cultivadas , Modelos Animales de Enfermedad , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Viroterapia Oncolítica , Trasplante de Células Madre , Células Madre/citología , Resultado del Tratamiento
13.
Methods Mol Biol ; 2034: 177-189, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31392685

RESUMEN

Microglia are morphologically dynamic cells, neatly arranged in an interconnected three-dimensional lattice throughout the brain, constantly surveying the parenchyma, and swiftly responding to a variety of external stimuli. Capturing the dynamics of their morphology, reaction to trauma, pathogens, or endogenous stimuli, and studying changes in their network in their physiological environment requires the use of two-photon microscopy, as well as a precise repositioning strategy. Herein, we describe a robust repeatable localization method, coupled with optimized in vivo two-photon microscopy for long-term imaging of single microglia cells in the mouse brain.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Microglía/citología , Microglía/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica , Animales , Ratones , Ratones Transgénicos
14.
Methods Mol Biol ; 2034: 293-301, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31392694

RESUMEN

During insults and disease blood-borne monocytes can invade brain and spinal cord, contributing to the neuroimmune response together with brain-resident microglia. The specific function of brain-infiltrating monocytes has been difficult to ascertain because of shared marker expression and morphology of these two immune cell types. Here we describe our method of repopulating the brain with circulating monocytes after microglia ablation to investigate the physiology of brain-invading monocytes, which engraft under these conditions.


Asunto(s)
Encefalopatías , Encéfalo , Movimiento Celular/inmunología , Microglía , Monocitos , Neuroinmunomodulación , Animales , Encéfalo/inmunología , Encéfalo/patología , Encefalopatías/inmunología , Encefalopatías/patología , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Inflamación/patología , Ratones , Microglía/inmunología , Microglía/patología , Monocitos/inmunología , Monocitos/patología , Médula Espinal/inmunología , Médula Espinal/patología , Enfermedades de la Columna Vertebral/inmunología , Enfermedades de la Columna Vertebral/patología
15.
Trends Immunol ; 40(4): 358-374, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833177

RESUMEN

Microglia, the resident macrophages of the brain, are highly plastic and well known to be pre-activated or 'primed' by active inflammatory processes, resulting in amplified responses to a second inflammatory insult. Furthermore, the capacity of microglia to develop 'innate immune memory' (IIM), that is, long-lasting molecular reprogramming, has recently been demonstrated. Depending on the initial stimulus, IIM can either enhance or suppress microglial responses to a delayed, secondary insult. Moreover, both priming and IIM can affect pathological hallmarks of neurological disease in mouse models, which may be consistent with certain clinical observations in patients. Here, we discuss the remarkable capacity of microglia to process inflammatory signals over short and long timeframes and propose new integrated nomenclature for these processes. We also highlight future research avenues, with implications for human brain disease.


Asunto(s)
Encéfalo/inmunología , Inmunidad Innata/inmunología , Memoria Inmunológica/inmunología , Microglía/inmunología , Animales , Humanos , Inflamación/inmunología
16.
J Neurochem ; 149(5): 562-581, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30702751

RESUMEN

This review discusses the profound connection between microglia, neuroinflammation, and Alzheimer's disease (AD). Theories have been postulated, tested, and modified over several decades. The findings have further bolstered the belief that microglia-mediated inflammation is both a product and contributor to AD pathology and progression. Distinct microglia phenotypes and their function, microglial recognition and response to protein aggregates in AD, and the overall role of microglia in AD are areas that have received considerable research attention and yielded significant results. The following article provides a historical perspective of microglia, a detailed discussion of multiple microglia phenotypes including dark microglia, and a review of a number of areas where microglia intersect with AD and other pathological neurological processes. The overall breadth of important discoveries achieved in these areas significantly strengthens the hypothesis that neuroinflammation plays a key role in AD. Future determination of the exact mechanisms by which microglia respond to, and attempt to mitigate, protein aggregation in AD may lead to new therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Inflamación/inmunología , Microglía/inmunología , Degeneración Nerviosa/inmunología , Enfermedad de Alzheimer/patología , Animales , Humanos , Microglía/metabolismo , Degeneración Nerviosa/patología
17.
Nat Neurosci ; 22(2): 191-204, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30617257

RESUMEN

Coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are associated with late-onset Alzheimer's disease (AD). We demonstrate that amyloid plaque seeding is increased in the absence of functional Trem2. Increased seeding is accompanied by decreased microglial clustering around newly seeded plaques and reduced plaque-associated apolipoprotein E (ApoE). Reduced ApoE deposition in plaques is also observed in brains of AD patients carrying TREM2 coding variants. Proteomic analyses and microglia depletion experiments revealed microglia as one origin of plaque-associated ApoE. Longitudinal amyloid small animal positron emission tomography demonstrates accelerated amyloidogenesis in Trem2 loss-of-function mutants at early stages, which progressed at a lower rate with aging. These findings suggest that in the absence of functional Trem2, early amyloidogenesis is accelerated due to reduced phagocytic clearance of amyloid seeds despite reduced plaque-associated ApoE.


Asunto(s)
Enfermedad de Alzheimer/genética , Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/patología , Glicoproteínas de Membrana/genética , Placa Amiloide/genética , Receptores Inmunológicos/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Genotipo , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Fagocitosis/fisiología , Placa Amiloide/metabolismo , Placa Amiloide/patología , Receptores Inmunológicos/metabolismo
18.
Sci Rep ; 8(1): 15002, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30302029

RESUMEN

The flagellated parasite Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (HAT). By a mechanism not well understood yet, trypanosomes enter the central nervous system (CNS), invade the brain parenchyma, and cause a fatal encephalopathy if is not treated. Trypanosomes are fast dividing organisms that, without any immune response, would kill the host in a short time. However, infected individuals survive either 6-12 months or more than 3 years for the acute and chronic forms, respectively. Thus, only when the brain defense collapses a lethal encephalopathy will occur. Here, we evaluated interactions between trypanosomes and microglial cells, which are the primary immune effector cells within the CNS. Using co-cultures of primary microglia and parasites, we found clear evidences of trypanosome phagocytosis by microglial cells. Microglia activation was also evident; analysis of its ultrastructure showed changes that have been reported in activated microglia undergoing oxidative stress caused by infections or degenerative diseases. Accordingly, an increase of the nitric oxide production was detected in supernatants of microglia/parasite co-cultures. Altogether, our results demonstrate that microglial cells respond to the presence of the parasite, leading to parasite's engulfment and elimination.


Asunto(s)
Encefalopatías/metabolismo , Microglía/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/parasitología , Encéfalo/patología , Encefalopatías/complicaciones , Encefalopatías/parasitología , Encefalopatías/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/parasitología , Sistema Nervioso Central/patología , Técnicas de Cocultivo , Humanos , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , Macrófagos/parasitología , Microglía/parasitología , Microglía/patología , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Estrés Oxidativo , Fagocitosis/genética , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/patología
19.
Nature ; 556(7701): 332-338, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643512

RESUMEN

Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer's pathology, immune training exacerbates cerebral ß-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.


Asunto(s)
Encéfalo/inmunología , Encéfalo/patología , Inmunidad Innata , Memoria Inmunológica , Enfermedades del Sistema Nervioso/inmunología , Enfermedades del Sistema Nervioso/patología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Amiloidosis/inmunología , Amiloidosis/patología , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Tolerancia Inmunológica , Inflamación/genética , Inflamación/inmunología , Masculino , Ratones , Microglía/inmunología , Microglía/metabolismo , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/patología
20.
Nat Neurosci ; 20(10): 1371-1376, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846081

RESUMEN

To clarify the role of microglia in brain homeostasis and disease, an understanding of their maintenance, proliferation and turnover is essential. The lifespan of brain microglia, however, remains uncertain, and reflects confounding factors in earlier assessments that were largely indirect. We genetically labeled single resident microglia in living mice and then used multiphoton microscopy to monitor these cells over time. Under homeostatic conditions, we found that neocortical resident microglia were long-lived, with a median lifetime of well over 15 months; thus, approximately half of these cells survive the entire mouse lifespan. While proliferation of resident neocortical microglia under homeostatic conditions was low, microglial proliferation in a mouse model of Alzheimer's ß-amyloidosis was increased threefold. The persistence of individual microglia throughout the mouse lifespan provides an explanation for how microglial priming early in life can induce lasting functional changes and how microglial senescence may contribute to age-related neurodegenerative diseases.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Microglía/citología , Microglía/fisiología , Análisis de la Célula Individual , Animales , Muerte Celular , Proliferación Celular , Estimación de Kaplan-Meier , Ratones , Ratones Transgénicos , Microglía/patología , Microscopía de Fluorescencia por Excitación Multifotónica , Neocórtex/fisiología , Placa Amiloide/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...