Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14715-14723, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38741481

RESUMEN

In this work, the chemical reduction of a hybrid pyracylene-hexa-peri-hexabenzocoronene (HPH) nanographene was investigated with different alkali metals (Na, K, Rb) to reveal its remarkable multielectron acceptor abilities. The UV-vis and 1H NMR spectroscopy monitoring of the stepwise reduction reactions supports the existence of all intermediate reduction states up to the hexaanion for HPH. Tuning the experimental conditions enabled the synthesis of the HPH anions with gradually increasing reduction states (up to -5) isolated with different alkali metal ions as crystalline materials. The single-crystal X-ray diffraction structure analysis demonstrates that the highly negatively charged HPH anions (-4 and -5) exhibit a drastic geometry change from boat-shaped (observed in the neutral parent, mono- and dianions) to a chair conformation, which was proved to be fully reversible by NMR spectroscopy. DFT calculations show that this geometry change is induced by an enhanced interaction between the coordinated metal ions and negatively charged HPH core in the chair conformation.

2.
J Chem Theory Comput ; 20(6): 2404-2422, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466924

RESUMEN

σ-Functionals belong to the class of Kohn-Sham (KS) correlation functionals based on the adiabatic-connection fluctuation-dissipation theorem and are technically closely related to the random phase approximation (RPA). They have the same computational demand as the latter, with the computational effort of an energy evaluation for both methods being lower than that of a preceding hybrid DFT calculation for typical systems but yield much higher accuracy, reaching chemical accuracy of 1 kcal/mol for quantities such as reactions and transition energies in main group chemistry. In previous work on σ-functionals, rather large Gaussian basis sets have been used. Here, we investigate the actual basis set requirements of σ-functionals and present three setups that employ smaller Gaussian basis sets ranging from quadruple-ζ (QZ) to triple-ζ (TZ) quality and represent a good compromise between accuracy and computational efficiency. Furthermore, we introduce an implementation of σ-functionals based on Slater-type basis sets and present two setups of QZ and TZ quality for this implementation. We test the accuracy of these setups on a large database of various physical properties and types of reactions, as well as equilibrium geometries and vibrational frequencies. As expected, the accuracy of σ-functional calculations becomes somewhat lower with a decreasing basis set size. However, for all setups considered here, calculations with σ-functionals are clearly more accurate than those within the RPA and even more so than those of the conventional KS methods. For the smallest setup using Gaussian-type basis functions and Slater-type basis functions, we introduce a reparametrization that reduces the loss in accuracy due to the basis set error to some extent. A comparison with the range-separated hybrid ωB97X-V and the double hybrid DSD-BLYP-D3 shows that σ functionals outperform in accuracy both of these accurate and, for their class, representative functionals.

3.
Chem Commun (Camb) ; 59(93): 13879-13882, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37933531

RESUMEN

Cu(I)-Hydrido complexes supported by dibenzo[b,f]azepinyl P-alkene hybrid ligands and stabilized by electrostatic interactions in a Cu-H⋯KCl⋯BR3 arrangement can be trapped with CO2 at low temperature to afford Cu(I)-formates. The complexes are isolable with and without a pendant BEt3 group and show strong Cu-O and weak B-O interactions.

4.
J Chem Phys ; 158(4): 044107, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36725500

RESUMEN

Recently, Kohn-Sham (KS) methods with new correlation functionals, called σ-functionals, have been introduced. Technically, σ-functionals are closely related to the well-known random phase approximation (RPA); formally, σ-functionals are rooted in perturbation theory along the adiabatic connection. If employed in a post-self-consistent field manner in a Gaussian basis set framework, then, σ-functional methods are computationally very efficient. Moreover, for main group chemistry, σ-functionals are highly accurate and can compete with high-level wave-function methods. For reaction and transition state energies, e.g., chemical accuracy of 1 kcal/mol is reached. Here, we show how to calculate first derivatives of the total energy with respect to nuclear coordinates for methods using σ-functionals and then carry out geometry optimizations for test sets of main group molecules, transition metal compounds, and non-covalently bonded systems. For main group molecules, we additionally calculate vibrational frequencies. σ-Functional methods are found to yield very accurate geometries and vibrational frequencies for main group molecules superior not only to those from conventional KS methods but also to those from RPA methods. For geometries of transition metal compounds, not surprisingly, best geometries are found for RPA methods, while σ-functional methods yield somewhat less good results. This is attributed to the fact that in the optimization of σ-functionals, transition metal compounds could not be represented well due to the lack of reliable reference data. For non-covalently bonded systems, σ-functionals yield geometries of the same quality as the RPA or as conventional KS schemes combined with dispersion corrections.

5.
Chemistry ; 29(6): e202203101, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36287191

RESUMEN

A novel, benign synthetic strategy towards soluble tetra(peri-naphthylene)anthracene (TPNA) decorated with triisopropylsilylethynyl substituents has been established. The compound is perfectly stable under ambient conditions in air and features intense and strongly bathochromically shifted UV/vis absorption and emission bands reaching to near-IR region beyond 900 nm. Cyclic voltammetry measurements revealed four facilitated reversible redox events comprising two oxidations and two reductions. These remarkable experimental findings were corroborated by theoretical studies to identify the TPNA platform a particularly useful candidate for the development of functional near-IR fluorophores upon appropriate functionalization.

6.
Angew Chem Int Ed Engl ; 61(39): e202205287, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35900162

RESUMEN

We describe a new type of nitrogen-centered polycyclic scaffold comprising a unique combination of 5-, 6-, and 7-membered rings. The compound is accessible through an intramolecular oxidative cyclodehydrogenation of tri(1-naphthyl)amine. To the best of our knowledge this is the very first example of a direct 3-fold cyclization of a triarylamine under oxidative conditions. The unusual ring fusion motif is confirmed by X-ray crystallography and the impact of cyclization on the electronic and photophysical properties is investigated both experimentally and theoretically based on density-functional theory (DFT) calculations. The formation of the unexpected product is rationalized by detailed mechanistic studies on the DFT level. The results suggest the cyclization to occur under kinetic control via a dicationic mechanism.

7.
Chem Commun (Camb) ; 58(19): 3206-3209, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35174826

RESUMEN

The chemical reduction of a π-expanded COT derivative, octaphenyltetrabenzocyclooctatetraene (1), with lithium or sodium metals in the presence of secondary ligands affords a new doubly-reduced product (1TR2-). The X-ray diffraction study revealed a reductive core rearrangement accompanied by the formation of a single C-C bond and severe twist of the central tetraphenylene core. The reversibility of two-electron reduction and core transformation is further confirmed by NMR spectroscopy and DFT calculations.

8.
J Chem Phys ; 155(13): 134111, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34624971

RESUMEN

Recently, a new type of orbital-dependent functional for the Kohn-Sham (KS) correlation energy, σ-functionals, was introduced. Technically, σ-functionals are closely related to the well-known direct random phase approximation (dRPA). Within the dRPA, a function of the eigenvalues σ of the frequency-dependent KS response function is integrated over purely imaginary frequencies. In σ-functionals, this function is replaced by one that is optimized with respect to reference sets of atomization, reaction, transition state, and non-covalent interaction energies. The previously introduced σ-functional uses input orbitals and eigenvalues from KS calculations with the generalized gradient approximation (GGA) exchange-correlation functional of Perdew, Burke, and Ernzerhof (PBE). Here, σ-functionals using input orbitals and eigenvalues from the meta-GGA TPSS and the hybrid-functionals PBE0 and B3LYP are presented and tested. The number of reference sets taken into account in the optimization of the σ-functionals is larger than in the first PBE based σ-functional and includes sets with 3d-transition metal compounds. Therefore, also a reparameterized PBE based σ-functional is introduced. The σ-functionals based on PBE0 and B3LYP orbitals and eigenvalues reach chemical accuracy for main group chemistry. For the 10 966 reactions from the highly accurate W4-11RE reference set, the B3LYP based σ-functional exhibits a mean average deviation of 1.03 kcal/mol compared to 1.08 kcal/mol for the coupled cluster singles doubles perturbative triples method if the same valence quadruple zeta basis set is used. For 3d-transition metal chemistry, accuracies of about 2 kcal/mol are reached. The computational effort for the post-self-consistent evaluation of the σ-functional is lower than that of a preceding PBE0 or B3LYP calculation for typical systems.

9.
Angew Chem Int Ed Engl ; 60(7): 3510-3514, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33108043

RESUMEN

The chemical reduction of a π-expanded polycyclic framework comprising a cyclooctatetraene moiety, octaphenyltetrabenzocyclooctatetraene, with lithium metal readily affords the corresponding tetra-anion instead of the expected aromatic dianion. As revealed by X-ray crystallography, the highly contorted tetra-anion is stabilized by coordination of two internally bound Li+ , while two external cations remain solvent separated. The variable-temperature 7 Li NMR spectra in THF confirm the presence of three types of Li+ ions and clearly differentiate internal binding, consistent with the crystal structure. Density-functional theory calculations suggest that the formation of the highly charged tetra-reduced carbanion is stabilized through Li+ coordination under the applied experimental conditions.

10.
Chemistry ; 26(58): 13157-13162, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32558004

RESUMEN

A concise synthetic route towards a new family of phosphorus-containing polycyclic aromatic hydrocarbons starting from the versatile acridophosphine has been established. The structural and optoelectronic properties of these compounds were efficiently modulated through derivatization of the phosphorus center. X-ray crystallographic analysis, UV/Vis spectroscopic, and electrochemical studies supported by DFT calculations identified the considerable potential of these scaffolds for the development of organophosphorus functional materials with tailored properties upon further functionalization.

11.
J Chem Phys ; 151(14): 144711, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615244

RESUMEN

Among other N-heterocycles, indole and its substituted derivatives, such as methylindoles, are considered promising Liquid Organic Hydrogen Carriers (LOHCs) for the storage of renewable energy. We used X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and density-functional theory (DFT) to investigate the low temperature adsorption and consecutive dehydrogenation reaction during heating of 2-methylindole, 2-methylindoline, and 2-methyloctahydroindole on Pt(111) and their viability as the LOHC system. In the photoemission experiments, for all Hx-2-methylindoles, we find deprotonation at the NH bond starting between 240 and 300 K, resulting in a 2-methylindolide species. Simultaneously or before this reaction step, the dehydrogenation of 2-methyloctahydroindole via 2-methylindoline and 2-methylindole intermediates is observed. For 2-methyloctahydroindole, we also find π-allyl intermediates above 230 K. Starting at ∼390 K, decomposition of the remaining 2-methylindolide species takes place under the conditions of our surface science experiments. DFT calculations give insight into the relative energies of the various species, reaction intermediates, and their isomers both in the gas phase and on the Pt(111) surface.

12.
Angew Chem Int Ed Engl ; 58(17): 5763-5768, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30675972

RESUMEN

The chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.

13.
Angew Chem Int Ed Engl ; 57(27): 8321-8325, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29603858

RESUMEN

Bonding is a fundamental aspect of organic chemistry, yet the magnitude of C=C bonding in [n]cumulenes as a function of increasing chain length has yet to be experimentally verified for derivatives longer than n=5. The synthesis of a series of apolar and unsymmetrically substituted tetraaryl[n]cumulenes (n=3, 5, 7, 9) was developed and rotational barriers for Z/E isomerization were measured using dynamic VTNMR spectroscopy. Both experiment and theory confirm a dramatic reduction in the rotational barrier (through estimation of ΔG≠rot for the isomerization) across the series, from >24 to 19 to 15 to 11 kcal-1 in [n]cumulenes with n=3, 5, 7, 9, respectively. The reduction in cumulenic bonding in longer cumulenes thus affords bond rotational barriers that are more characteristic of a sterically hindered single bond than that of a double bond.

14.
Angew Chem Int Ed Engl ; 56(48): 15267-15273, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28980764

RESUMEN

Black phosphorus intercalation compounds (BPICs) with alkali metals (namely: K and Na) have been synthesized in bulk by solid-state as well as vapor-phase reactions. By means of a combination of in situ X-ray diffraction, Raman spectroscopy, and DFT calculations the structural behavior of the BPICs at different intercalation stages has been demonstrated for the first time. Our results provide a glimpse into the very first steps of a new family of intercalation compounds, with a distinct behavior as compared to its graphite analogues (GICs), showing a remarkable structural complexity and a dynamic behavior.

15.
Angew Chem Int Ed Engl ; 56(46): 14389-14394, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28945952

RESUMEN

Antimonene, a novel group 15 two-dimensional material, is functionalized with a tailormade perylene bisimide through strong van der Waals interactions. The functionalization process leads to a significant quenching of the perylene fluorescence, and surpasses that observed for either graphene or black phosphorus, thus allowing straightforward characterization of the flakes by scanning Raman microscopy. Furthermore, scanning photoelectron microscopy studies and theoretical calculations reveal a remarkable charge-transfer behavior, being twice that of black phosphorus. Moreover, the excellent stability under environmental conditions of pristine antimonene has been tackled, thus pointing towards the spontaneous formation of a sub-nanometric oxide passivation layer. DFT calculations revealed that the noncovalent functionalization of antimonene results in a charge-transfer band gap of 1.1 eV.

16.
J Chem Theory Comput ; 13(10): 4726-4740, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28783360

RESUMEN

An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G0W0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G0W0 variants.

17.
Angew Chem Int Ed Engl ; 55(47): 14557-14562, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27763706

RESUMEN

Black phosphorus (BP) was functionalized with organic moieties on the basis of liquid exfoliation. The treatment of BP with electron-withdrawing 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) led to electron transfer from BP to the organic dopant. On the other hand, the noncovalent interaction of BP with a perylene diimide was mainly due to van der Waals interactions but also led to considerable stabilization of the BP flakes against oxygen degradation.

18.
Chemistry ; 22(15): 5189-97, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26919489

RESUMEN

Aza- and carbobicyclic compounds possess favorable pharmaceutical properties, but they are difficult to access. Herein, we demonstrate an unprecedented organocatalytic two component six-step chemodivergent domino reaction, which provides a straightforward, sustainable and atom economical route to difficult-to-access complex bicyclic architectures: azabicycles and carbobicycles, whose ratios can be controlled by the applied electrophiles and catalysts. Detailed NMR and X-ray studies on the structures and relative stereochemistry of selected compounds are presented. Mechanistic investigations of the chemoselective branching step have been carried out with DFT methods in conjunction with semiempirical van der Waals interactions. This new domino reaction opens up a new vista of generating, in a single operation, new bioactive compounds with strong antiviral properties (EC50 up to 0.071 µM for human cytomegalovirus (HCMV)) outperforming clinically used ganciclovir (EC50 2.6 µM).


Asunto(s)
Antivirales/química , Compuestos Aza/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Citomegalovirus/química , Antivirales/farmacología , Compuestos Aza/farmacología , Catálisis , Ciclización , Citomegalovirus/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Estereoisomerismo
19.
Angew Chem Int Ed Engl ; 54(22): 6645-9, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25916978

RESUMEN

The stabilization of long [n]cumulenes has traditionally been achieved by placing sterically bulky "protecting groups" at the termini, which shield the reactive carbon chain from unwanted reactions. Herein, we present an alternative strategy: stabilization through threading the sp-hybridized carbon chain through a phenanthroline-based macrocycle. The result is stable [9]cumulene rotaxanes that enable the study of properties as a function of length for [n]cumulenes in unprecedented detail, including by quantitative UV/Vis spectroscopy, cyclic voltammetry, and differential scanning calorimetry. The experimental results are supported by DFT calculations.

20.
Wiley Interdiscip Rev Comput Mol Sci ; 4(3): 269-284, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25309629

RESUMEN

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...