Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Genes (Basel) ; 15(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38927701

RESUMEN

Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers that were bred by artificial insemination (AI, n = 2829) or were embryo transfer (ET, n = 2086) recipients, by completing a genome-wide association analysis and gene set enrichment analysis using SNP data (GSEA-SNP). Three unique loci, containing four positional candidate genes, were associated (p < 1 × 10-5) with HCR1 for ET recipients, while the GSEA-SNP identified four gene sets (NES ≥ 3) and sixty-two leading edge genes (LEGs) enriched for HCR1. While no loci were associated with HCR1 bred by AI, one gene set and twelve LEGs were enriched (NES ≥ 3) for HCR1 with the GSEA-SNP. This included one gene (PKD2) shared between HCR1 AI and ET services. Identifying loci associated or enriched for HCR1 provides an opportunity to use them as genomic selection tools to facilitate the selection of cattle with higher reproductive efficiency, and to better understand embryonic loss.


Asunto(s)
Transferencia de Embrión , Estudio de Asociación del Genoma Completo , Inseminación Artificial , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Femenino , Transferencia de Embrión/métodos , Transferencia de Embrión/veterinaria , Inseminación Artificial/veterinaria , Embarazo , Estudio de Asociación del Genoma Completo/métodos , Fertilización/genética , Cruzamiento/métodos , Índice de Embarazo , Genoma/genética
2.
Res Sq ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38712074

RESUMEN

Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. We assembled complete and gapless telomere to telomere (T2T) Y chromosomes for these species. The pseudo-autosomal regions were similar in length, but the total chromosome size was substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity was accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 18MYA. The centromeres also differed dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosome have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.

3.
Front Genet ; 14: 1292671, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075681

RESUMEN

Pseudorabies virus (PRV)-the causative agent of Aujeszky's disease-was eliminated from commercial pig production herds in the United States (US) in 2004; however, PRV remains endemic among invasive feral swine (Sus scrofa). The circulation of PRV among abundant, widespread feral swine populations poses a sustained risk for disease spillover to production herds. Risk-based surveillance has been successfully implemented for PRV in feral swine populations in the US. However, understanding the role of host genetics in infection status may offer new insights into the epidemiology and disease dynamics of PRV that can be applied to management strategies. Genetic mechanisms underlying host susceptibility to PRV are relatively unknown; therefore, we sought to identify genomic regions associated with PRV infection status among naturally infected feral swine using genome-wide association studies (GWAS) and gene set enrichment analysis of single nucleotide polymorphism data (GSEA-SNP). Paired serological and genotypic data were collected from 6,081 feral swine distributed across the invaded range within the contiguous US. Three complementary study populations were developed for GWAS: 1) comprehensive population consisting of feral swine throughout the invaded range within the contiguous US; 2) population of feral swine under high, but temporally variable PRV infection pressure; and 3) population of feral swine under temporally stable, high PRV infection pressure. We identified one intronic SNP associated with PRV infection status within candidate gene AKAP6 on autosome 7. Various gene sets linked to metabolic pathways were enriched in the GSEA-SNP. Ultimately, improving disease surveillance efforts in feral swine will be critical to further understanding of the role host genetics play in PRV infection status, helping secure the health of commercial pork production.

4.
J Vet Intern Med ; 37(2): 510-517, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36780177

RESUMEN

BACKGROUND: Delayed postoperative hemorrhage (DEPOH) is an important health concern for Scottish deerhounds. HYPOTHESIS/OBJECTIVES: Identify genes associated with DEPOH in Scottish deerhounds. ANIMALS: Two hundred sixty-nine privately owned Scottish deerhounds. METHODS: Retrospective case-control study. DEPOH cases and controls were identified through an owner health survey. Genome-wide association analysis was performed using whole genome sequences from 8 cases and 17 controls. All cases and controls were genotyped for selected variants. RESULTS: Of 269 dogs, 10 met inclusion and exclusion criteria for DEPOH, while 62 controls had undergone similar surgical procedures without DEPOH. Genome-wide association analysis identified a single locus on chromosome 9 spanning 40 genes. One of these genes (SERPINF2 encoding alpha-2 antiplasmin) was directly linked to the pathophysiology of DEPOH. The entire cohort was genotyped for a missense SERPINF2 variant (c.605 C>T; p.A202V). Compared to dogs with the reference C/C genotype, the likelihood of DEPOH was significantly higher for dogs with the T/T genotype (odds ratio [OR] = 1235; 95% confidence interval [CI] = 23-6752; P = 0.0005) and with the C/T genotype (OR = 28; 95% CI = 1.4-542; P = 0.03). CONCLUSIONS AND CLINICAL IMPORTANCE: SERPINF2 is associated with DEPOH in Scottish deerhounds. Genetic testing might be able to identify dogs that are susceptible to DEPOH.


Asunto(s)
Enfermedades de los Perros , Estudio de Asociación del Genoma Completo , Perros , Animales , Estudios Retrospectivos , Estudios de Casos y Controles , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Secuenciación Completa del Genoma/veterinaria , Hemorragia Posoperatoria/veterinaria , Escocia/epidemiología , Polimorfismo de Nucleótido Simple , Enfermedades de los Perros/genética
5.
Front Genet ; 14: 1297444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288162

RESUMEN

Ovine footrot is an infectious disease with important contributions from Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is characterized by separation of the hoof from underlying tissue, and this causes severe lameness that negatively impacts animal wellbeing, growth, and profitability. Large economic losses result from lost production as well as treatment costs, and improved genetic tools to address footrot are a valuable long-term goal. Prior genetic studies had examined European wool sheep, but hair sheep breeds such as Katahdin and Blackbelly have been reported to have increased resistance to footrot, as well as to intestinal parasites. Thus, footrot condition scores were collected from 251 U.S. sheep including Katahdin, Blackbelly, and European-influenced crossbred sheep with direct and imputed genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density. Genome-wide association was performed with a mixed model accounting for farm and principal components derived from animal genotypes, as well as a random term for the genomic relationship matrix. We identified three genome-wide significant associations, including SNPs in or near GBP6 and TCHH. We also identified 33 additional associated SNPs with genome-wide suggestive evidence, including a cluster of 6 SNPs in a peak near the genome-wide significance threshold located near the glutamine transporter gene SLC38A1. These findings suggest genetic susceptibility to footrot may be influenced by genes involved in divergent biological processes such as immune responses, nutrient availability, and hoof growth and integrity. This is the first genome-wide study to investigate susceptibility to footrot by including hair sheep and also the first study of any kind to identify multiple genome-wide significant associations with ovine footrot. These results provide a foundation for developing genetic tests for marker-assisted selection to improve resistance to ovine footrot once additional steps like fine mapping and validation are complete.

6.
PLoS One ; 17(5): e0266748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35522671

RESUMEN

Monocytes are a core component of the immune system that arise from bone marrow and differentiate into cells responsible for phagocytosis and antigen presentation. Their derivatives are often responsible for the initiation of the adaptive immune response. Monocytes and macrophages are central in both controlling and propagating infectious diseases such as infection by Coxiella burnetii and small ruminant lentivirus in sheep. Genotypes from 513 Rambouillet, Polypay, and Columbia sheep (Ovis aries) were generated using the Ovine SNP50 BeadChip. Of these sheep, 222 animals were subsequently genotyped with the Ovine Infinium® HD SNP BeadChip to increase SNP coverage. Data from the 222 HD genotyped sheep were combined with the data from an additional 258 unique sheep to form a 480-sheep reference panel; this panel was used to impute the low-density genotypes to the HD genotyping density. Then, a genome-wide association analysis was conducted to identify loci associated with absolute monocyte counts from blood. The analysis used a single-locus mixed linear model implementing EMMAX with age and ten principal components as fixed effects. Two genome-wide significant peaks (p < 5x10-7) were identified on chromosomes 9 and 1, and ten genome-wide suggestive peaks (p < 1x10-5) were identified on chromosomes 1, 2, 3, 4, 9, 10, 15, and 16. The identified loci were within or near genes including KCNK9, involved into cytokine production, LY6D, a member of a superfamily of genes, some of which subset monocyte lineages, and HMGN1, which encodes a chromatin regulator associated with myeloid cell differentiation. Further investigation of these loci is being conducted to understand their contributions to monocyte counts. Investigating the genetic basis of monocyte lineages and numbers may in turn provide information about pathogens of veterinary importance and elucidate fundamental immunology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oveja Doméstica , Animales , Genoma , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Monocitos , Polimorfismo de Nucleótido Simple , Ovinos/genética , Oveja Doméstica/genética
7.
Front Vet Sci ; 8: 679074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34409086

RESUMEN

Bovine coronavirus (BCoV) is associated with respiratory and enteric infections in both dairy and beef cattle worldwide. It is also one of a complex of pathogens associated with bovine respiratory disease (BRD), which affects millions of cattle annually. The objectives of this study were to identify loci and heritability estimates associated with BCoV infection and BRD in dairy calves and feedlot cattle. Dairy calves from California (n = 1,938) and New Mexico (n = 647) and feedlot cattle from Colorado (n = 915) and Washington (n = 934) were tested for the presence of BCoV when classified as BRD cases or controls following the McGuirk scoring system. Two comparisons associated with BCoV were investigated: (1) cattle positive for BCoV (BCoV+) were compared to cattle negative for BCoV (BCoV-) and (2) cattle positive for BCoV and affected with BRD (BCoV+BRD+) were compared to cattle negative for BCoV and BRD (BCoV-BRD-). The Illumina BovineHD BeadChip was used for genotyping, and genome-wide association analyses (GWAA) were performed using EMMAX (efficient mixed-model association eXpedited). The GWAA for BCoV+ identified 51 loci (p < 1 × 10-5; 24 feedlot, 16 dairy, 11 combined) associated with infection with BCoV. Three loci were associated with BCoV+ across populations. Heritability estimates for BCoV+ were 0.01 for dairy, 0.11 for feedlot cattle, and 0.03 for the combined population. For BCoV+BRD+, 80 loci (p < 1 × 10-5; 26 feedlot, 25 dairy, 29 combined) were associated including 14 loci across populations. Heritability estimates for BCoV+BRD+ were 0.003 for dairy, 0.44 for feedlot cattle, and 0.07 for the combined population. Several positional candidate genes associated with BCoV and BRD in this study have been associated with other coronaviruses and respiratory infections in humans and mice. These results suggest that selection may reduce susceptibility to BCoV infection and BRD in cattle.

8.
Animals (Basel) ; 11(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206933

RESUMEN

Small ruminant lentivirus (SRLV) causes Maedi-Visna or Ovine Progressive Pneumonia in sheep and creates insidious livestock production losses. This retrovirus is closely related to human immunodeficiency virus and currently has no vaccines or cure. Genetic marker assisted selection for sheep disease resiliency presents an attractive management solution. Previously, we identified a region containing a cluster of zinc finger genes that had association with ovine SRLV proviral concentration. Trait-association analysis validated a small insertion/deletion variant near ZNF389 (rs397514112) in multiple sheep breeds. In the current study, 543 sheep from two distinct populations were genotyped at 34 additional variants for fine mapping of the regulatory elements within this locus. Variants were selected based on ChIP-seq annotation data from sheep alveolar macrophages that defined active cis-regulatory elements predicted to influence zinc finger gene expression. We present a haplotype block of variants within regulatory elements that have improved associations and larger effect sizes (up to 4.7-fold genotypic difference in proviral concentration) than the previously validated ZNF389 deletion marker. Hypotheses for the underlying causal mutation or mutations are presented based on changes to in silico transcription factor binding sites. These variants offer alternative markers for selective breeding and are targets for future functional mutation assays.

9.
Front Vet Sci ; 8: 625323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026885

RESUMEN

Bovine paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), continues to impact the dairy industry through increased morbidity, mortality, and lost production. Although genome-wide association analyses (GWAAs) have identified loci associated with susceptibility to MAP, limited progress has been made in identifying mutations that cause disease susceptibility. A 235-kb region on Bos taurus chromosome 3 (BTA3), containing a 70-kb haplotype block surrounding endothelin 2 (EDN2), has previously been associated with the risk of MAP infection. EDN2 is highly expressed in the gut and is involved in intracellular calcium signaling and a wide array of biological processes. The objective of this study was to identify putative causal mutations for disease susceptibility in the region surrounding EDN2 in Holstein and Jersey cattle. Using sequence data from 10 Holstein and 10 Jersey cattle, common variants within the 70-kb region containing EDN2 were identified. A custom SNP genotyping array fine-mapped the region using 221 Holstein and 51 Jersey cattle and identified 17 putative causal variants (P < 0.01) located in the 5' region of EDN2 and a SNP in the 3' UTR (P = 0.00009) associated with MAP infection. MicroRNA interference assays, mRNA stability assays, and electrophoretic mobility shift assays were performed to determine if allelic changes at each SNP resulted in differences in EDN2 stability or expression. Two SNPs [rs109651404 (G/A) and rs110287192 (G/T)] located within the promoter region of EDN2 displayed differential binding affinity for transcription factors in binding sequences harboring the alternate SNP alleles. The luciferase reporter assay revealed that the transcriptional activity of the EDN2 promoter was increased (P < 0.05) with the A allele for rs109651404 and the G allele for rs110287192. These results suggest that the variants rs109651404 and rs110287192 are mutations that alter transcription and thus may alter susceptibility to MAP infection in Holstein and Jersey cattle.

10.
Genomics ; 113(4): 1867-1875, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33831438

RESUMEN

Human milk oligosaccharides (HMO), the third most abundant component of human milk, are thought to be important contributors to infant health. Studies have provided evidence that geography, stage of lactation, and Lewis and secretor blood groups are associated with HMO profile. However, little is known about how variation across the genome may influence HMO composition among women in various populations. In this study, we performed genome-wide association analyses of 395 women from 8 countries to identify genetic regions associated with 19 different HMO. Our data support FUT2 as the most significantly associated (P < 4.23-9 to P < 4.5-70) gene with seven HMO and provide evidence of balancing selection for FUT2. Although polymorphisms in FUT3 were also associated with variation in lacto-N-fucopentaose II and difucosyllacto-N-tetrose, we found little evidence of selection on FUT3. To our knowledge, this is the first report of the use of genome-wide association analyses on HMO.


Asunto(s)
Estudio de Asociación del Genoma Completo , Leche Humana , Oligosacáridos , Femenino , Humanos , Lactancia , Leche Humana/química , Oligosacáridos/química
11.
Anim Health Res Rev ; 21(2): 179-183, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33261714

RESUMEN

Genomic variation exists in cattle that affects their susceptibility to the complex of pathogens responsible for bovine respiratory disease (BRD). Heritability estimates and genome-wide association analyses (GWAA) support the role of host genomic variation in BRD susceptibility. Heritability estimates for BRD susceptibility range from 0.02 to 0.29 depending on the population, the definition of the disease, and the accuracy of diagnosis. GWAA have identified genomic regions (loci) associated with BRD in beef and dairy cattle based on a variety of BRD diagnostic criteria. National standards need to be developed for BRD diagnostics and reporting to facilitate selection. Commercial genotyping is available to predict BRD susceptibility in dairy cattle and for the selection of replacement animals. Disease pathogen profiles vary by region and can result in genetic heterogeneity where different loci are important for susceptibility to different BRD pathogens. Although the identification of the BRD pathogens may not be critical for treatment, it is of paramount importance in identifying loci that render cattle susceptible to the disease. Identification of loci associated with host susceptibility to BRD provides a foundation for genomic selection to reduce disease and opens the possibilities to a better understanding of how the host defends itself.


Asunto(s)
Complejo Respiratorio Bovino/genética , Genotipo , Animales , Bovinos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/veterinaria , Genómica , Selección Genética
12.
Virology ; 551: 10-15, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33010670

RESUMEN

Bovine respiratory disease (BRD) is the costliest disease affecting the cattle industry globally. Orthomyxoviruses, influenza C virus (ICV) and influenza D virus (IDV) have recently been implicated to play a role in BRD. However, there are contradicting reports about the association of IDV and ICV to BRD. Using the largest cohort study (cattle, n = 599) to date we investigated the association of influenza viruses in cattle with BRD. Cattle were scored for respiratory symptoms and pooled nasal and pharyngeal swabs were tested for bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus, bovine coronavirus, ICV and IDV by real-time PCR. Cattle that have higher viral loads of IDV and ICV also have greater numbers of co-infecting viruses than controls. More strikingly, 2 logs higher IDV viral RNA in BRD-symptomatic cattle that are co-infected animals than those infected with IDV alone. Our results strongly suggest that ICV and IDV may be significant contributors to BRD.


Asunto(s)
Complejo Respiratorio Bovino/virología , Gammainfluenzavirus/patogenicidad , Infecciones por Orthomyxoviridae/veterinaria , Thogotovirus/patogenicidad , Carga Viral/veterinaria , Animales , Complejo Respiratorio Bovino/epidemiología , Bovinos , Coinfección/epidemiología , Coinfección/veterinaria , Coinfección/virología , Femenino , Gammainfluenzavirus/aislamiento & purificación , Ganado , Masculino , Oportunidad Relativa , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Prevalencia , ARN Viral/análisis , Thogotovirus/aislamiento & purificación
13.
PLoS One ; 15(9): e0238631, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32881967

RESUMEN

Paratuberculosis (pTB), also known as Johne's disease (JD), is a contagious, chronic, and granulomatous inflammatory disease of the intestines of ruminants which is caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection, resulting in billions of dollars in economic losses worldwide. Since, currently, no effective cure is available for MAP infection, it is important to explore the genetic variants that affect the host MAP susceptibility. The aim of this study was to analyze a potential association between EDN2 synonymous gene mutations (rs110287192, rs109651404 and rs136707411), that modifies susceptibility to pTB. EDN2 rs110287192, rs109651404 and rs136707411 mutations were genotyped in 68 infected and 753 healthy animals from East Anatolian Red crossbred, Anatolian Black crossbred and Holstein breed cattle by using Custom TaqMan SNP Genotyping Assays. For pTB status, serum antibody levels S/P ≥ 1.0 were assessed in carriers of the different EDN2 genotypes. EDN2 rs110287192 mutation showed a significant association with bovine pTB (adj. p < 0.05). For rs110287192 locus, the odd ratios for GG and TG genotypes versus TT genotypes were 1.73; (95% CI = 0.34-8.59) and 0.53 (95% CI = 0.12-2.37) respectively, which indicated that proportion of TG heterozygotes were significantly higher in control animals as compared to pTB animals. On the other hand, while rs136707411 mutation showed a suggestive association with pTB status in the examined cattle population (nominal p < 0.05); no association was detected between rs109651404 genotypes and pTB status. Selecting animals against rs110287192-GG genotype may decrease the risk of pTB in cattle of the Bos taurus taurus subspecies.


Asunto(s)
Cruzamiento , Bovinos/genética , Bovinos/microbiología , Endotelinas/genética , Predisposición Genética a la Enfermedad , Paratuberculosis/genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Animales , Modelos Logísticos , Paratuberculosis/microbiología
14.
Genes (Basel) ; 11(7)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650431

RESUMEN

Heifer conception rate (HCR) is defined as the percentage of inseminated heifers that become pregnant at each service. The genome-wide association analyses in this study focused on identifying the loci associated with Holstein heifer (n = 2013) conception rate at first service (HCR1) and the number of times bred (TBRD) to achieve a pregnancy. There were 348 unique loci associated (p < 5 × 10-8) with HCR1 and 615 unique loci associated (p < 5 × 10-8) with TBRD. The two phenotypes shared 302 loci, and 56 loci were validated in independent cattle populations. There were 52 transcription factor binding sites (TFBS) and 552 positional candidate genes identified in the HCR1- and TBRD-associated loci. The positional candidate genes and the TFBS associated with HCR1 and TBRD were used in the ingenuity pathway analysis (IPA). In the IPA, 11 pathways, 207 master regulators and 11 upstream regulators were associated (p < 1.23 × 10-5) with HCR1 and TBRD. The validated loci associated with both HCR1 and TBRD make good candidates for genomic selection and further investigations to elucidate the mechanisms associated with subfertility and infertility.


Asunto(s)
Bovinos/genética , Fertilización/genética , Sitios de Carácter Cuantitativo , Animales , Bovinos/fisiología , Redes Reguladoras de Genes , Masculino , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas
15.
Genes (Basel) ; 10(12)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766405

RESUMEN

BACKGROUND: The objectives of this study were to identify loci, positional candidate genes, gene-sets, and pathways associated with spontaneous abortion (SA) in cattle and compare these results with previous human SA studies to determine if cattle are a good SA model for humans. Pregnancy was determined at gestation day 35 for Holstein heifers and cows. Genotypes from 43,984 SNPs of 499 pregnant heifers and 498 pregnant cows that calved at full term (FT) were compared to 62 heifers and 28 cows experiencing SA. A genome-wide association analysis, gene-set enrichment analysis-single nucleotide polymorphism, and ingenuity pathway analysis were used to identify regions, pathways, and master regulators associated with SA in heifers, cows, and a combined population. RESULTS: Twenty-three loci and 21 positional candidate genes were associated (p < 1 × 10-5) with SA and one of these (KIR3DS1) has been associated with SA in humans. Eight gene-sets (NES > 3.0) were enriched in SA and one was previously reported as enriched in human SA. Four master regulators (p < 0.01) were associated with SA within two populations. CONCLUSIONS: One locus associated with SA was validated and 39 positional candidate and leading-edge genes and 2 gene-sets were enriched in SA in cattle and in humans.


Asunto(s)
Aborto Espontáneo/genética , Bovinos/genética , Animales , Femenino , Estudio de Asociación del Genoma Completo , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple , Embarazo
16.
BMC Genomics ; 20(1): 840, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718557

RESUMEN

BACKGROUND: Subfertility is a major issue facing the dairy industry as the average US Holstein cow conception rate (CCR) is approximately 35%. The genetics underlying the physiological processes responsible for CCR, the proportion of cows able to conceive and maintain a pregnancy at each breeding, are not well characterized. The objectives of this study were to identify loci, positional candidate genes, and transcription factor binding sites (TFBS) associated with CCR and determine if there was a genetic correlation between CCR and milk production in primiparous Holstein cows. Cows were bred via artificial insemination (AI) at either observed estrus or timed AI and pregnancy status was determined at day 35 post-insemination. Additive, dominant, and recessive efficient mixed model association expedited (EMMAX) models were used in two genome-wide association analyses (GWAA). One GWAA focused on CCR at first service (CCR1) comparing cows that conceived and maintained pregnancy to day 35 after the first AI (n = 494) to those that were open after the first AI (n = 538). The second GWAA investigated loci associated with the number of times bred (TBRD) required for conception in cows that either conceived after the first AI (n = 494) or repeated services (n = 472). RESULTS: The CCR1 GWAA identified 123, 198, and 76 loci associated (P < 5 × 10- 08) in additive, dominant, and recessive models, respectively. The TBRD GWAA identified 66, 95, and 33 loci associated (P < 5 × 10- 08) in additive, dominant, and recessive models, respectively. Four of the top five loci were shared in CCR1 and TBRD for each GWAA model. Many of the associated loci harbored positional candidate genes and TFBS with putative functional relevance to fertility. Thirty-six of the loci were validated in previous GWAA studies across multiple breeds. None of the CCR1 or TBRD associated loci were associated with milk production, nor was their significance with phenotypic and genetic correlations to 305-day milk production. CONCLUSIONS: The identification and validation of loci, positional candidate genes, and TFBS associated with CCR1 and TBRD can be utilized to improve, and further characterize the processes involved in cattle fertility.


Asunto(s)
Bovinos/genética , Sitios Genéticos , Animales , Sitios de Unión , Femenino , Fertilización/genética , Estudio de Asociación del Genoma Completo , Leche , Polimorfismo de Nucleótido Simple , Factores de Transcripción/metabolismo
17.
BMC Genomics ; 20(1): 576, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299913

RESUMEN

BACKGROUND: Subfertility is one challenge facing the dairy industry as the average Holstein heifer conception rate (HCR), the proportion of heifers that conceive and maintain a pregnancy per breeding, is estimated at 55-60%. Of the loci associated with HCR, few have been validated in an independent cattle population, limiting their usefulness for selection or furthering our understanding of the mechanisms involved in successful pregnancy. Therefore, the objectives here were to identify loci associated with HCR: 1) to the first artificial insemination (AI) service (HCR1), 2) to repeated AI services required for a heifer to conceive (TBRD) and 3) to validate loci previously associated with fertility. Breeding and health records from 3359 Holstein heifers were obtained after heifers were bred by AI at observed estrus, with pregnancy determined at day 35 via palpation. Heifer DNA was genotyped using the Illumina BovineHD BeadChip, and genome-wide association analyses (GWAA) were performed with additive, dominant and recessive models using the Efficient Mixed Model Association eXpedited (EMMAX) method with a relationship matrix for two phenotypes. The HCR1 GWAA compared heifers that were pregnant after the first AI service (n = 497) to heifers that were open following the first AI service (n = 405), which included those that never conceived. The TBRD GWAA compared only those heifers which did conceive, across variable numbers of AI service (n = 712). Comparison of loci previously associated with fertility, HCR1 or TBRD were considered the same locus for validation when in linkage disequilibrium (D' > 0.7). RESULTS: The HCR1 GWAA identified 116, 187 and 28 loci associated (P < 5 × 10- 8) in additive, dominant and recessive models, respectively. The TBRD GWAA identified 235, 362, and 69 QTL associated (P < 5 × 10- 8) with additive, dominant and recessive models, respectively. Loci previously associated with fertility were in linkage disequilibrium with 22 loci shared with HCR1 and TBRD, 5 HCR1 and 19 TBRD loci. CONCLUSIONS: Loci associated with HCR1 and TBRD that have been identified and validated can be used to improve HCR through genomic selection, and to better understand possible mechanisms associated with subfertility.


Asunto(s)
Fertilidad/genética , Sitios Genéticos/genética , Animales , Bovinos , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Modelos Genéticos , Reproducibilidad de los Resultados
18.
BMC Genomics ; 20(1): 555, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277567

RESUMEN

BACKGROUND: National genetic evaluations for disease resistance do not exist, precluding the genetic improvement of cattle for these traits. We imputed BovineHD genotypes to whole genome sequence for 2703 Holsteins that were cases or controls for Bovine Respiratory Disease and sampled from either California or New Mexico to construct and compare genomic prediction models. The sequence variation reference dataset comprised variants called for 1578 animals from Run 5 of the 1000 Bull Genomes Project, including 450 Holsteins and 29 animals sequenced from this study population. Genotypes for 9,282,726 variants with minor allele frequencies ≥5% were imputed and used to obtain genomic predictions in GEMMA using a Bayesian Sparse Linear Mixed Model. RESULTS: Variation explained by markers increased from 13.6% using BovineHD data to 14.4% using imputed whole genome sequence data and the resolution of genomic regions detected as harbouring QTL substantially increased. Explained variation in the analysis of the combined California and New Mexico data was less than when data for each state were separately analysed and the estimated genetic correlation between risk of Bovine Respiratory Disease in California and New Mexico Holsteins was - 0.36. Consequently, genomic predictions trained using the data from one state did not accurately predict disease risk in the other state. To determine if a prediction model could be developed with utility in both states, we selected variants within genomic regions harbouring: 1) genes involved in the normal immune response to infection by pathogens responsible for Bovine Respiratory Disease detected by RNA-Seq analysis, and/or 2) QTL identified in the association analysis of the imputed sequence variants. The model based on QTL selected variants is biased but when trained in one state generated BRD risk predictions with positive accuracies in the other state. CONCLUSIONS: We demonstrate the utility of sequence-based and biology-driven model development for genomic selection. Disease phenotypes cannot be routinely recorded in most livestock species and the observed phenotypes may vary in their genomic architecture due to variation in the pathogen composition across environments. Elucidation of trait biology and genetic architecture may guide the development of prediction models with utility across breeds and environments.


Asunto(s)
Complejo Respiratorio Bovino/genética , Sitios de Carácter Cuantitativo , Animales , Teorema de Bayes , California , Estudios de Casos y Controles , Bovinos , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Modelos Genéticos , New Mexico , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
19.
Front Genet ; 10: 327, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156693

RESUMEN

In 2008, a consortium led by the Agricultural Research Service (ARS) and the National Institute for Food and Agriculture (NIFA) published the "Blueprint for USDA Efforts in Agricultural Animal Genomics 2008-2017," which served as a guiding document for research and funding in animal genomics. In the decade that followed, many of the goals set forth in the blueprint were accomplished. However, several other goals require further research. In addition, new topics not covered in the original blueprint, which are the result of emerging technologies, require exploration. To develop a new, updated blueprint, ARS and NIFA, along with scientists in the animal genomics field, convened a workshop titled "Genome to Phenome: A USDA Blueprint for Improving Animal Production" in November 2017, and these discussions were used to develop new goals for the next decade. Like the previous blueprint, these goals are grouped into the broad categories "Science to Practice," "Discovery Science," and "Infrastructure." New goals for characterizing the microbiome, enhancing the use of gene editing and other biotechnologies, and preserving genetic diversity are included in the new blueprint, along with updated goals within many genome research topics described in the previous blueprint. The updated blueprint that follows describes the vision, current state of the art, the research needed to advance the field, expected deliverables, and partnerships needed for each animal genomics research topic. Accomplishment of the goals described in the blueprint will significantly increase the ability to meet the demands for animal products by an increasing world population within the next decade.

20.
J Anim Sci ; 97(3): 1117-1123, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576450

RESUMEN

Consumption of an adequate volume of high-quality colostrum soon after birth is critical for a calf's health. Few studies have focused on the genetics associated with colostrum production, even though several dairy herds in the United States have reported incidents of low to no colostrum production during the fall and winter seasons. The objectives of this study were to identify loci associated with quantity and quality of colostrum production in a herd of Jersey cattle (n = 345) and to identify potential positional candidate genes and/or transcription factor binding site motifs located near associated loci. Cattle that freshened between the months of October and December of 2016 at a single dairy were enrolled in the study and produced on average 3.03 kg of colostrum at their first milking. This study included 112 cattle genotyped with the GeneSeek GGP50k BeadChip and another 233 cattle previously genotyped with various other arrays. The 233 cattle genotyped at lower densities were imputed to the GGP50k BeadChip density using BEAGLE 4.1.1, and 2 genome-wide association analyses (GWAA) were conducted using an additive efficient mixed-model association expedited method with a genomic relationship matrix (EMMAX-GRM). The first GWAA investigated loci associated with colostrum quantity and identified 7 loci: 6 that were moderately associated (5 × 10-07 > P < 1 × 10-05) and 1 that was strongly associated (P < 5 × 10-07). The second GWAA investigated colostrum quality and identified 1 moderately (5 × 10-07 > P < 1 × 10-05) associated locus. Five loci harbored positional candidate genes which had functional relevance to colostrum production, and 1 locus located on BTA10 contained a transcription factor binding site motif for TFAP2A which has previously been linked to mammary gland development. Pseudoheritability estimates were moderate for colostrum quality (0.19 ± 0.06) and high for colostrum quantity (0.76 ± 0.11), suggesting that genomic selection for these traits would be possible. Diminished colostrum quantity or quality can have a significant impact on herd health and herd economics. The identification of loci, positional candidate genes, and transcription factor binding site motifs associated with colostrum production could be used in genomic selection to allow producers to select for cattle with good colostrum production, improving calf health, and reducing economic losses to the herd.


Asunto(s)
Bovinos/genética , Calostro/metabolismo , Estudio de Asociación del Genoma Completo/veterinaria , Genoma/genética , Animales , Bovinos/fisiología , Femenino , Genotipo , Fenotipo , Embarazo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...