Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 6(4): 372-388, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35478228

RESUMEN

The immature physiology of cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) limits their utility for drug screening and disease modelling. Here we show that suitable combinations of mechanical stimuli and metabolic cues can enhance the maturation of hiPSC-derived cardiomyocytes, and that the maturation-inducing cues have phenotype-dependent effects on the cells' action-potential morphology and calcium handling. By using microfluidic chips that enhanced the alignment and extracellular-matrix production of cardiac microtissues derived from genetically distinct sources of hiPSC-derived cardiomyocytes, we identified fatty-acid-enriched maturation media that improved the cells' mitochondrial structure and calcium handling, and observed divergent cell-source-dependent effects on action-potential duration (APD). Specifically, in the presence of maturation media, tissues with abnormally prolonged APDs exhibited shorter APDs, and tissues with aberrantly short APDs displayed prolonged APDs. Regardless of cell source, tissue maturation reduced variabilities in spontaneous beat rate and in APD, and led to converging cell phenotypes (with APDs within the 300-450 ms range characteristic of human left ventricular cardiomyocytes) that improved the modelling of the effects of pro-arrhythmic drugs on cardiac tissue.


Asunto(s)
Células Madre Pluripotentes Inducidas , Calcio/metabolismo , Diferenciación Celular , Humanos , Microfluídica , Miocitos Cardíacos
2.
PLoS One ; 15(5): e0232715, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32369512

RESUMEN

PIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted exclusively to germline cells. In recent years, accumulating evidence has demonstrated that piRNAs are actually expressed in pluripotent, neural, cardiac and even cancer cells. However, controversy remains around the existence and function of somatic piRNAs. Using small RNA-seq samples from H9 pluripotent cells differentiated to mesoderm progenitors and cardiomyocytes we identified the expression of 447 piRNA transcripts, of which 241 were detected in pluripotency, 218 in mesoderm and 171 in cardiac cells. The majority of them originated from the sense strand of protein coding and lncRNAs genes in all stages of differentiation, though no evidences of amplification loop (ping-pong) were found. Genes hosting piRNA transcripts in cardiac samples were related to critical biological processes in the heart, like contraction and cardiac muscle development. Our results indicate that these piRNAs might have a role in fine-tuning the expression of genes involved in differentiation of pluripotent cells to cardiomyocytes.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Miocitos Cardíacos/citología , ARN Interferente Pequeño/genética , Adulto , Diferenciación Celular , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo
3.
Chem Sci ; 11(33): 8973-8980, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34123152

RESUMEN

Reduction sensitive linkers (RSLs) have the potential to transform the field of drug delivery due to their ease of use and selective cleavage in intracellular environments. However, despite their compelling attributes, developing reduction sensitive self-immolative linkers for aliphatic amines has been challenging due to their poor leaving group ability and high pK a values. Here a traceless self-immolative linker composed of a dithiol-ethyl carbonate connected to a benzyl carbamate (DEC) is presented, which can modify aliphatic amines and release them rapidly and quantitatively after disulfide reduction. DEC was able to reversibly modify the lysine residues on CRISPR-Cas9 with either PEG, the cell penetrating peptide Arg10, or donor DNA, and generated Cas9 conjugates with significantly improved biological properties. In particular, Cas9-DEC-PEG was able to diffuse through brain tissue significantly better than unmodified Cas9, making it a more suitable candidate for genome editing in animals. Furthermore, conjugation of Arg10 to Cas9 with DEC was able to generate a self-delivering Cas9 RNP that could edit cells without transfection reagents. Finally, conjugation of donor DNA to Cas9 with DEC increased the homology directed DNA repair (HDR) rate of the Cas9 RNP by 50% in HEK 293T cell line. We anticipate that DEC will have numerous applications in biotechnology, given the ubiquitous presence of aliphatic amines on small molecule and protein therapeutics.

4.
Sci Rep ; 9(1): 19203, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844156

RESUMEN

Patient-specific cardiomyocytes obtained from induced pluripotent stem cells (CM-iPSC) offer unprecedented mechanistic insights in the study of inherited cardiac diseases. The objective of this work was to study a type 2 long QT syndrome (LQTS2)-associated mutation (c.1600C > T in KCNH2, p.R534C in hERG) in CM-iPSC. Peripheral blood mononuclear cells were isolated from two patients with the R534C mutation and iPSCs were generated. In addition, the same mutation was inserted in a control iPSC line by genome editing using CRISPR/Cas9. Cells expressed pluripotency markers and showed spontaneous differentiation into the three embryonic germ layers. Electrophysiology demonstrated that action potential duration (APD) of LQTS2 CM-iPSC was significantly longer than that of the control line, as well as the triangulation of the action potentials (AP), implying a longer duration of phase 3. Treatment with the IKr inhibitor E4031 only caused APD prolongation in the control line. Patch clamp showed a reduction of IKr on LQTS2 CM-iPSC compared to control, but channel activation was not significantly affected. Immunofluorescence for hERG demonstrated perinuclear staining in LQTS2 CM-iPSC. In conclusion, CM-iPSC recapitulated the LQTS2 phenotype and our findings suggest that the R534C mutation in KCNH2 leads to a channel trafficking defect to the plasma membrane.


Asunto(s)
Canal de Potasio ERG1/genética , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/genética , Mutación/genética , Miocitos Cardíacos/fisiología , Transporte de Proteínas/genética , Potenciales de Acción/genética , Adolescente , Adulto , Membrana Celular/genética , Femenino , Edición Génica/métodos , Humanos , Leucocitos Mononucleares/fisiología , Masculino , Fenotipo , Adulto Joven
5.
Sci Rep ; 9(1): 18077, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792288

RESUMEN

The stem cell niche has a strong influence in the differentiation potential of human pluripotent stem cells with integrins playing a major role in communicating cells with the extracellular environment. However, it is not well understood how interactions between integrins and the extracellular matrix are involved in cardiac stem cell differentiation. To evaluate this, we performed a profile of integrins expression in two stages of cardiac differentiation: mesodermal progenitors and cardiomyocytes. We found an active regulation of the expression of different integrins during cardiac differentiation. In particular, integrin α5 subunit showed an increased expression in mesodermal progenitors, and a significant downregulation in cardiomyocytes. To analyze the effect of α5 subunit, we modified its expression by using a CRISPRi technique. After its downregulation, a significant impairment in the process of epithelial-to-mesenchymal transition was seen. Early mesoderm development was significantly affected due to a downregulation of key genes such as T Brachyury and TBX6. Furthermore, we observed that repression of integrin α5 during early stages led to a reduction in cardiomyocyte differentiation and impaired contractility. In summary, our results showed the link between changes in cell identity with the regulation of integrin α5 expression through the alteration of early stages of mesoderm commitment.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Integrina alfa5/genética , Miocitos Cardíacos/citología , Sistemas CRISPR-Cas , Diferenciación Celular , Línea Celular , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células Madre Embrionarias Humanas/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Nicho de Células Madre
6.
Stem Cell Reports ; 12(4): 845-859, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30880077

RESUMEN

Deep learning is a significant step forward for developing autonomous tasks. One of its branches, computer vision, allows image recognition with high accuracy thanks to the use of convolutional neural networks (CNNs). Our goal was to train a CNN with transmitted light microscopy images to distinguish pluripotent stem cells from early differentiating cells. We induced differentiation of mouse embryonic stem cells to epiblast-like cells and took images at several time points from the initial stimulus. We found that the networks can be trained to recognize undifferentiated cells from differentiating cells with an accuracy higher than 99%. Successful prediction started just 20 min after the onset of differentiation. Furthermore, CNNs displayed great performance in several similar pluripotent stem cell (PSC) settings, including mesoderm differentiation in human induced PSCs. Accurate cellular morphology recognition in a simple microscopic set up may have a significant impact on how cell assays are performed in the near future.


Asunto(s)
Diferenciación Celular , Aprendizaje Profundo , Redes Neurales de la Computación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Cultivadas , Humanos , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Microscopía
7.
PLoS One ; 13(12): e0207074, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30507934

RESUMEN

Cell reprogramming has been well described in mouse and human cells. The expression of specific microRNAs has demonstrated to be essential for pluripotent maintenance and cell differentiation, but not much information is available in domestic species. We aim to generate horse iPSCs, characterize them and evaluate the expression of different microRNAs (miR-302a,b,c,d, miR-205, miR-145, miR-9, miR-96, miR-125b and miR-296). Two equine iPSC lines (L2 and L3) were characterized after the reprogramming of equine fibroblasts with the four human Yamanaka's factors (OCT-4/SOX-2/c-MYC/KLF4). The pluripotency of both lines was assessed by phosphatase alkaline activity, expression of OCT-4, NANOG and REX1 by RT-PCR, and by immunofluorescence of OCT-4, SOX-2 and c-MYC. In vitro differentiation to embryo bodies (EBs) showed the capacity of the iPSCs to differentiate into ectodermal, endodermal and mesodermal phenotypes. MicroRNA analyses resulted in higher expression of the miR-302 family, miR-9 and miR-96 in L2 and L3 vs. fibroblasts (p<0.05), as previously shown in human pluripotent cells. Moreover, downregulation of miR-145 and miR-205 was observed. After differentiation to EBs, higher expression of miR-96 was observed in the EBs respect to the iPSCs, and also the expression of miR-205 was induced but only in the EB-L2. In addition, in silico alignments of the equine microRNAs with mRNA targets suggested the ability of miR-302 family to regulate cell cycle and epithelial mesenchymal transition genes, miR-9 and miR-96 to regulate neural determinant genes and miR-145 to regulate pluripotent genes, similarly as in humans. In conclusion, we could obtain equine iPSCs, characterize them and determine for the first time the expression level of microRNAs in equine pluripotent cells.


Asunto(s)
Caballos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , Animales , Diferenciación Celular/genética , Fibroblastos/citología , Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Técnicas de Transferencia Nuclear
8.
Circ J ; 83(1): 41-51, 2018 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-30369562

RESUMEN

BACKGROUND: It has been shown that carvedilol and its non ß-blocking analog, VK-II-86, inhibit spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The aim of this study is to determine whether carvedilol and VK-II-86 suppress ouabain-induced arrhythmogenic Ca2+ waves and apoptosis in cardiac myocytes. Methods and Results: Rat cardiac myocytes were exposed to toxic doses of ouabain (50 µmol/L). Cell length (contraction) was monitored in electrically stimulated and non-stimulated conditions. Ouabain treatment increased contractility, frequency of spontaneous contractions and apoptosis compared to control cells. Carvedilol (1 µmol/L) or VK-II-86 (1 µmol/L) did not affect ouabain-induced inotropy, but significantly reduced the frequency of Ca2+ waves, spontaneous contractions and cell death evoked by ouabain treatment. This antiarrhythmic effect was not associated with a reduction in Ca2+ calmodulin-dependent protein kinase II (CaMKII) activity, phospholamban and ryanodine receptor phosphorylation or SR Ca2+ load. Similar results could be replicated in human cardiomyocytes derived from stem cells and in a mathematical model of human myocytes. CONCLUSIONS: Carvedilol and VK-II-86 are effective to prevent ouabain-induced apoptosis and spontaneous contractions indicative of arrhythmogenic activity without affecting inotropy and demonstrated to be effective in human models, thus emerging as a therapeutic tool for the prevention of digitalis-induced arrhythmias and cardiac toxicity.


Asunto(s)
Cardiotoxicidad/prevención & control , Carvedilol , Modelos Cardiovasculares , Ouabaína/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Carvedilol/análogos & derivados , Carvedilol/farmacología , Modelos Animales de Enfermedad , Humanos , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ouabaína/farmacología , Ratas , Ratas Wistar
9.
Sci Rep ; 8(1): 8072, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29795287

RESUMEN

MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression related to many cellular functions. We performed a small-RNAseq analysis of cardiac differentiation from pluripotent stem cells. Our analyses identified some new aspects about microRNA expression in this differentiation process. First, we described a dynamic expression profile of microRNAs where some of them are clustered according to their expression level. Second, we described the extensive network of isomiRs and ADAR modifications. Third, we identified the microRNAs families and clusters involved in the establishment of cardiac lineage and define the mirRNAome based on these groups. Finally, we were able to determine a more accurate miRNAome associated with cardiomyocytes by comparing the expressed microRNAs with other mature cells. MicroRNAs exert their effect in a complex and interconnected way, making necessary a global analysis to better understand their role. Our data expands the knowledge of microRNAs and their implications in cardiomyogenesis.


Asunto(s)
Biomarcadores/metabolismo , Linaje de la Célula/genética , Regulación de la Expresión Génica , Mesodermo/metabolismo , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Células Cultivadas , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mesodermo/citología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología
10.
J Cardiovasc Transl Res ; 11(1): 1-13, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29019149

RESUMEN

Leukemia inhibitory factor (LIF) is a growth factor with pleiotropic biological functions. It has been reported that LIF acts at different stages during mesoderm development. Also, it has been shown that LIF has a cytoprotective effect on neonatal murine cardiomyocytes (CMs) in culture, but little is known about the role of LIF during human cardiogenesis. Thus, we analyzed the effects of LIF on human pluripotent stem cells (PSC) undergoing cardiac differentiation. We first showed that LIF is expressed in the human heart during early development. We found that the addition of LIF within a precise time window during the in vitro differentiation process significantly increased CMs viability. This finding was associated to a decrease in the expression of pro-apoptotic protein Bax, which coincides with a reduction of the apoptotic rate. Therefore, the addition of LIF may represent a promising strategy for increasing CMs survival derived from PSCs.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas/efectos de los fármacos , Factor Inhibidor de Leucemia/farmacología , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Factor Inhibidor de Leucemia/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fenotipo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Factores de Tiempo , Proteína X Asociada a bcl-2/metabolismo
11.
J Cardiovasc Transl Res ; 11(1): 14, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29139097

RESUMEN

Please note that Carolina Blüguermann's surname was misspelled (as Blugüermann) in this article as originally published.

12.
Sci Rep ; 6: 35660, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762303

RESUMEN

Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT. We found that inhibition of AKT with three non-structurally related inhibitors (GSK690693, AKT inhibitor VIII and AKT inhibitor IV) decreased cell viability and induced apoptosis. We observed a rapid increase in phosphatidylserine translocation and in the extent of DNA fragmentation after inhibitors addition. Moreover, abrogation of AKT activity led to Caspase-9, Caspase-3, and PARP cleavage. Importantly, we demonstrated by pharmacological inhibition and siRNA knockdown that GSK3ß signaling is responsible, at least in part, of the apoptosis triggered by AKT inhibition. Moreover, GSK3ß inhibition decreases basal apoptosis rate and promotes PSC proliferation. In conclusion, we demonstrated that AKT activation prevents apoptosis, partly through inhibition of GSK3ß, and thus results relevant for PSC survival.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteína Oncogénica v-akt/metabolismo , Células Madre Pluripotentes/fisiología , Transducción de Señal , Supervivencia Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos
14.
Stem Cell Res Ther ; 6: 6, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25582222

RESUMEN

INTRODUCTION: Mesenchymal stem cells (MSCs) are a promising source of cells for regenerative therapies. Although they can be isolated easily from several tissues, cell expansion is limited since their properties are lost with successive passages. Hence, pluripotent derived MSCs (PD-MSCs) arise as a suitable alternative for MSC production. Nevertheless, at present, PD-MSC derivation protocols are either expensive or not suitable for clinical purposes. METHODS: In this work we present a therapy-grade, inexpensive and simple protocol to derive MSCs from pluripotent stem cells (PSCs) based on the use of platelet lysate (PL) as medium supplement. RESULTS: We showed that the PD-MSCPL expressed multiple MSC markers, including CD90, CD73, CD105, CD166, and CD271, among others. These cells also show multilineage differentiation ability and immunomodulatory effects on pre-stimulated lymphocytes. Thorough characterization of these cells showed that a PD-MSCPL resembles an umbilical cord (UC) MSC and differs from a PSC in surface marker and extracellular matrix proteins and integrin expression. Moreover, the OCT-4 promoter is re-methylated with mesenchymal differentiation comparable with the methylation levels of UC-MSCs and fibroblasts. Lastly, the use of PL-supplemented medium generates significantly more MSCs than the use of fetal bovine serum. CONCLUSIONS: This protocol can be used to generate a large amount of PD-MSCs with low cost and is compatible with clinical therapies.


Asunto(s)
Plaquetas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Pluripotentes/citología , Antígenos de Superficie/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Metilación de ADN , Células Madre Embrionarias Humanas/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Células Madre Mesenquimatosas/metabolismo , Microscopía Fluorescente , Fenotipo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...