Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Gastroenterology ; 162(2): 604-620.e20, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34695382

RESUMEN

BACKGROUND & AIMS: Acinar to ductal metaplasia (ADM) occurs in the pancreas in response to tissue injury and is a potential precursor for adenocarcinoma. The goal of these studies was to define the populations arising from ADM, the associated transcriptional changes, and markers of disease progression. METHODS: Acinar cells were lineage-traced with enhanced yellow fluorescent protein (EYFP) to follow their fate post-injury. Transcripts of more than 13,000 EYFP+ cells were determined using single-cell RNA sequencing (scRNA-seq). Developmental trajectories were generated. Data were compared with gastric metaplasia, KrasG12D-induced neoplasia, and human pancreatitis. Results were confirmed by immunostaining and electron microscopy. KrasG12D was expressed in injury-induced ADM using several inducible Cre drivers. Surgical specimens of chronic pancreatitis from 15 patients were evaluated by immunostaining. RESULTS: scRNA-seq of ADM revealed emergence of a mucin/ductal population resembling gastric pyloric metaplasia. Lineage trajectories suggest that some pyloric metaplasia cells can generate tuft and enteroendocrine cells (EECs). Comparison with KrasG12D-induced ADM identifies populations associated with disease progression. Activation of KrasG12D expression in HNF1B+ or POU2F3+ ADM populations leads to neoplastic transformation and formation of MUC5AC+ gastric-pit-like cells. Human pancreatitis samples also harbor pyloric metaplasia with a similar transcriptional phenotype. CONCLUSIONS: Under conditions of chronic injury, acinar cells undergo a pyloric-type metaplasia to mucinous progenitor-like populations, which seed disparate tuft cell and EEC lineages. ADM-derived EEC subtypes are diverse. KrasG12D expression is sufficient to drive neoplasia when targeted to injury-induced ADM populations and offers an alternative origin for tumorigenesis. This program is conserved in human pancreatitis, providing insight into early events in pancreas diseases.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Metaplasia/genética , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Células Acinares/citología , Plasticidad de la Célula/genética , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Metaplasia/metabolismo , Mucina 5AC/genética , Páncreas/citología , Páncreas/metabolismo , Conductos Pancreáticos/citología , Pancreatitis/genética , Pancreatitis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Análisis de la Célula Individual
2.
Nat Cell Biol ; 23(12): 1240-1254, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887515

RESUMEN

Extracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer's disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.


Asunto(s)
Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Nanopartículas/metabolismo , Enfermedad de Alzheimer/patología , Enzima Convertidora de Angiotensina 2/metabolismo , Transporte Biológico/fisiología , Biomarcadores/metabolismo , COVID-19/patología , Enfermedades Cardiovasculares/patología , Comunicación Celular/fisiología , Línea Celular Tumoral , Células HeLa , Humanos , Ácido Láctico/metabolismo , MicroARNs/genética , Nanopartículas/clasificación , Neoplasias/patología , Microambiente Tumoral
3.
Sci Rep ; 11(1): 17759, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493746

RESUMEN

Inducing cardiac myocytes to proliferate is considered a potential therapy to target heart disease, however, modulating cardiac myocyte proliferation has proven to be a technical challenge. The Hippo pathway is a kinase signaling cascade that regulates cell proliferation during the growth of the heart. Inhibition of the Hippo pathway increases the activation of the transcription factors YAP/TAZ, which translocate to the nucleus and upregulate transcription of pro-proliferative genes. The Hippo pathway regulates the proliferation of cancer cells, pluripotent stem cells, and epithelial cells through a cell-cell contact-dependent manner, however, it is unclear if cell density-dependent cell proliferation is a consistent feature in cardiac myocytes. Here, we used cultured human iPSC-derived cardiac myocytes (hiCMs) as a model system to investigate this concept. hiCMs have a comparable transcriptome to the immature cardiac myocytes that proliferate during heart development in vivo. Our data indicate that a dense syncytium of hiCMs can regain cell cycle activity and YAP expression and activity when plated sparsely or when density is reduced through wounding. We found that combining two small molecules, XMU-MP-1 and S1P, increased YAP activity and further enhanced proliferation of low-density hiCMs. Importantly, these compounds had no effect on hiCMs within a dense syncytium. These data add to a growing body of literature that link Hippo pathway regulation with cardiac myocyte proliferation and demonstrate that regulation is restricted to cells with reduced contact inhibition.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Secuencia de Bases , Recuento de Células , Ciclo Celular/efectos de los fármacos , Diferenciación Celular , División Celular/efectos de los fármacos , Células Cultivadas , Inhibición de Contacto/efectos de los fármacos , Vía de Señalización Hippo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisofosfolípidos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple , ARN/biosíntesis , ARN/genética , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacología , Sulfonamidas/farmacología , Factores de Transcripción/fisiología , Proteínas Señalizadoras YAP
4.
iScience ; 23(4): 101015, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32283523

RESUMEN

MCL-1 is a well-characterized inhibitor of cell death that has also been shown to be a regulator of mitochondrial dynamics in human pluripotent stem cells. We used cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) to uncover whether MCL-1 is crucial for cardiac function and survival. Inhibition of MCL-1 by BH3 mimetics resulted in the disruption of mitochondrial morphology and dynamics as well as disorganization of the actin cytoskeleton. Interfering with MCL-1 function affects the homeostatic proximity of DRP-1 and MCL-1 at the outer mitochondrial membrane, resulting in decreased functionality of hiPSC-CMs. Cardiomyocytes display abnormal cardiac performance even after caspase inhibition, supporting a nonapoptotic activity of MCL-1 in hiPSC-CMs. BH3 mimetics targeting MCL-1 are promising anti-tumor therapeutics. Progression toward using BCL-2 family inhibitors, especially targeting MCL-1, depends on understanding its canonical function not only in preventing apoptosis but also in the maintenance of mitochondrial dynamics and function.

5.
Mol Biol Cell ; 31(12): 1273-1288, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267210

RESUMEN

Forces generated by heart muscle contraction must be balanced by adhesion to the extracellular matrix (ECM) and to other cells for proper heart function. Decades of data have suggested that cell-ECM adhesions are important for sarcomere assembly. However, the relationship between cell-ECM adhesions and sarcomeres assembling de novo remains untested. Sarcomeres arise from muscle stress fibers (MSFs) that are translocating on the top (dorsal) surface of cultured cardiomyocytes. Using an array of tools to modulate cell-ECM adhesion, we established a strong positive correlation between the extent of cell-ECM adhesion and sarcomere assembly. On the other hand, we found a strong negative correlation between the extent of cell-ECM adhesion and the rate of MSF translocation, a phenomenon also observed in nonmuscle cells. We further find a conserved network architecture that also exists in nonmuscle cells. Taken together, our results show that cell-ECM adhesions mediate coupling between the substrate and MSFs, allowing their maturation into sarcomere-containing myofibrils.


Asunto(s)
Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Fibras de Estrés/metabolismo , Actinas/metabolismo , Actinas/fisiología , Técnicas de Cultivo de Célula/métodos , Uniones Célula-Matriz/fisiología , Matriz Extracelular/fisiología , Humanos , Miocitos Cardíacos/fisiología , Miofibrillas/fisiología , Sarcómeros/fisiología , Fibras de Estrés/fisiología
6.
Sci Rep ; 9(1): 15917, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685907

RESUMEN

Cardiac muscle cells lack regenerative capacity in postnatal mammals. A concerted effort has been made in the field to determine regulators of cardiomyocyte proliferation and identify therapeutic strategies to induce division, with the ultimate goal of regenerating heart tissue after a myocardial infarct. We sought to optimize a high throughput screening protocol to facilitate this effort. We developed a straight-forward high throughput screen with simple readouts to identify small molecules that modulate cardiomyocyte proliferation. We identify human induced pluripotent stem cell-derived cardiomyocytes (hiCMs) as a model system for such a screen, as a very small subset of hiCMs have the potential to proliferate. The ability of hiCMs to proliferate is density-dependent, and cell density has no effect on the outcome of proliferation: cytokinesis or binucleation. Screening a compound library revealed many regulators of proliferation and cell death. We provide a comprehensive and flexible screening procedure and cellular phenotype information for each compound. We then provide an example of steps to follow after this screen is performed, using three of the identified small molecules at various concentrations, further implicating their target kinases in cardiomyocyte proliferation. This screening platform is flexible and cost-effective, opening the field of cardiovascular cell biology to laboratories without substantial funding or specialized training, thus diversifying this scientific community.


Asunto(s)
Proliferación Celular , Ensayos Analíticos de Alto Rendimiento/métodos , Miocitos Cardíacos/citología , Animales , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Citocinesis , Ensayos Analíticos de Alto Rendimiento/instrumentación , Células Madre Pluripotentes Inducidas/citología , Antígeno Ki-67/metabolismo , Ratones , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Fenotipo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
7.
Elife ; 72018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30540249

RESUMEN

The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 µm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Fibras de Estrés/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Línea Celular , Línea Celular Tumoral , Forminas , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Fibras Musculares Esqueléticas/citología , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Interferencia de ARN
8.
Curr Biol ; 28(18): 2876-2888.e4, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30197089

RESUMEN

Transporting epithelial cells like those that line the gut build large arrays of actin-supported protrusions called microvilli, which extend from the apical surface into luminal spaces to increase functional surface area. Although critical for maintaining physiological homeostasis, mechanisms controlling the formation of microvilli remain poorly understood. Here, we report that the inverse-bin-amphiphysin-Rvs (I-BAR)-domain-containing protein insulin receptor tyrosine kinase substrate (IRTKS) (also known as BAIAP2L1) promotes the growth of epithelial microvilli. Super-resolution microscopy and live imaging of differentiating epithelial cells revealed that IRTKS localizes to the distal tips of actively growing microvilli via a mechanism that requires its N-terminal I-BAR domain. At microvillar tips, IRTKS promotes elongation through a mechanism involving its C-terminal actin-binding WH2 domain. IRTKS can also drive microvillar elongation using its SH3 domain to recruit the bundling protein EPS8 to microvillar tips. These results provide new insight on mechanisms that control microvillar growth during the differentiation of transporting epithelial cells and help explain why IRTKS is targeted by enteric pathogens that disrupt microvillar structure during infection of the intestinal epithelium.


Asunto(s)
Proteínas de Microfilamentos/genética , Microvellosidades/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Colon , Células Epiteliales , Femenino , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Unión Proteica , Dominios Homologos src/genética
9.
Invest Ophthalmol Vis Sci ; 58(14): 6481-6488, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29288266

RESUMEN

Purpose: We previously demonstrated an association between European mitochondrial haplogroups and proliferative diabetic retinopathy (PDR). The purpose of this study was to determine how the relationship between these haplogroups and both diabetes duration and hyperglycemia, two major risk factors for diabetic retinopathy (DR), affect PDR prevalence. Methods: Our population consisted of patients with type 2 diabetes with (n = 377) and without (n = 480) DR. A Kruskal-Wallis test was used to compare diabetes duration and hemoglobin A1c (HbA1c) among mitochondrial haplogroups. Logistic regressions were performed to investigate diabetes duration and HbA1c as risk factors for PDR in the context of European mitochondrial haplogroups. Results: Neither diabetes duration nor HbA1c differed among mitochondrial haplogroups. Among DR patients from haplogroup H, longer diabetes duration and increasing HbA1c were significant risk factors for PDR (P = 0.0001 and P = 0.011, respectively). Neither diabetes duration nor HbA1c was a significant risk factor for PDR in DR patients from haplogroup UK. Conclusions: European mitochondrial haplogroups modify the effects of diabetes duration and HbA1c on PDR risk in patients with type 2 diabetes. In our patient population, longer diabetes duration and higher HbA1c increased PDR risk in patients from haplogroup H, but did not affect PDR risk in patients from haplogroup UK. This relationship has not been previously demonstrated and may explain, in part, why some patients with nonproliferative DR develop PDR and others do not, despite similar diabetes duration and glycemic control.


Asunto(s)
ADN Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Retinopatía Diabética/genética , Hemoglobina Glucada/metabolismo , Mitocondrias/genética , Polimorfismo de Nucleótido Simple , Población Blanca/etnología , Anciano , Glucemia/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etnología , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/etnología , Femenino , Haplotipos , Humanos , Masculino , Factores de Riesgo , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...