Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2318838121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870057

RESUMEN

Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.


Asunto(s)
Caenorhabditis elegans , Huso Acromático , Animales , Caenorhabditis elegans/embriología , Ratones , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Citocinesis/fisiología , Rotación , Cigoto/metabolismo , Cigoto/citología , Cigoto/crecimiento & desarrollo , Embrión no Mamífero/citología , Desarrollo Embrionario/fisiología , Modelos Biológicos
2.
PLoS One ; 15(10): e0239678, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052918

RESUMEN

We generalize the Susceptible-Infected-Removed (SIR) model for epidemics to take into account generic effects of heterogeneity in the degree of susceptibility to infection in the population. We introduce a single new parameter corresponding to a power-law exponent of the susceptibility distribution at small susceptibilities. We find that for this class of distributions the gamma distribution is the attractor of the dynamics. This allows us to identify generic effects of population heterogeneity in a model as simple as the original SIR model which is contained as a limiting case. Because of this simplicity, numerical solutions can be generated easily and key properties of the epidemic wave can still be obtained exactly. In particular, we present exact expressions for the herd immunity level, the final size of the epidemic, as well as for the shape of the wave and for observables that can be quantified during an epidemic. In strongly heterogeneous populations, the herd immunity level can be much lower than in models with homogeneous populations as commonly used for example to discuss effects of mitigation. Using our model to analyze data for the SARS-CoV-2 epidemic in Germany shows that the reported time course is consistent with several scenarios characterized by different levels of immunity. These scenarios differ in population heterogeneity and in the time course of the infection rate, for example due to mitigation efforts or seasonality. Our analysis reveals that quantifying the effects of mitigation requires knowledge on the degree of heterogeneity in the population. Our work shows that key effects of population heterogeneity can be captured without increasing the complexity of the model. We show that information about population heterogeneity will be key to understand how far an epidemic has progressed and what can be expected for its future course.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Demografía/estadística & datos numéricos , Modelos Teóricos , Neumonía Viral/epidemiología , COVID-19 , Infecciones por Coronavirus/inmunología , Alemania , Humanos , Inmunidad Colectiva , Pandemias , Neumonía Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA