RESUMEN
Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell-cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) is a multifunctional intrinsically disordered protein (IDP) best described as a transcriptional regulator. Both proteins are involved in the development and metastasis of several types of tumors. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with RYBP by using in cellulo methods, namely immunofluorescence (IF) and proximity ligation assay (PLA), and in vitro biophysical techniques, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), and isothermal titration calorimetry (ITC). We also characterized the binding of the two proteins by using in silico experiments. Our results showed that there was binding in tumor and non-tumoral cell lines. Binding in vitro between the two proteins was also monitored and found to occur with a dissociation constant in the low micromolar range (~10 µM). Finally, in silico experiments provided additional information on the possible structure of the binding complex, especially on the binding ARM-PKP1 hot-spot. Our findings suggest that RYBP might be a rescuer of the high expression of PKP1 in tumors, where it could decrease the epithelial-mesenchymal transition in some cancer cells.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Placofilinas , Unión Proteica , Proteínas Represoras , Humanos , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Dicroismo Circular , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Placofilinas/metabolismo , Placofilinas/genética , Placofilinas/química , Dominios Proteicos , Proteínas Represoras/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genéticaRESUMEN
RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 µM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.
Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Línea Celular , Neoplasias/genética , Epigénesis Genética , Proteínas Represoras/genéticaRESUMEN
The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions. We characterized the interaction between NUPR1 and PADI4 in vitro, in silico, and in cellulo. The interaction of NUPR1 and PADI4 occurred with a dissociation constant of 18 ± 6 µM. The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch surrounding the key residue Ala33, as pinpointed by: (i) computational results; and, (ii) site-directed mutagenesis of residues of NUPR1. The association between PADI4 and wild-type NUPR1 was also assessed in cellulo by using proximity ligation assays (PLAs) and immunofluorescence (IF), and it occurred mainly in the nucleus. Moreover, binding between NUPR1L and PADI4 also occurred in vitro with an affinity similar to that of NUPR1. Molecular modelling provided information on the binding hot spot for PADI4. This is an example of a disordered partner of PADI4, whereas its other known interacting proteins are well-folded. Altogether, our results suggest that the NUPR1/PADI4 complex could have crucial functions in modulating DNA-repair, favoring metastasis, or facilitating citrullination of other proteins.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cromatina , Proteínas Intrínsecamente Desordenadas , Proteínas de Neoplasias , Proteínas Nucleares , Arginina Deiminasa Proteína-Tipo 4 , Secuencia de Bases , Cromatina/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genéticaRESUMEN
The LrtA protein of Synechocystis sp. PCC 6803 intervenes in cyanobacterial post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family of proteins, involved in protein synthesis. In this work, we studied the conformational preferences and stability of isolated LrtA in solution. At physiological conditions, as shown by hydrodynamic techniques, LrtA was involved in a self-association equilibrium. As indicated by Nuclear Magnetic Resonance (NMR), circular dichroism (CD) and fluorescence, the protein acquired a folded, native-like conformation between pH 6.0 and 9.0. However, that conformation was not very stable, as suggested by thermal and chemical denaturations followed by CD and fluorescence. Theoretical studies of its highly-charged sequence suggest that LrtA had a Janus sequence, with a context-dependent fold. Our modelling and molecular dynamics (MD) simulations indicate that the protein adopted the same fold observed in other members of the HPF family (ß-α-ß-ß-ß-α) at its N-terminal region (residues 1100), whereas the C terminus (residues 100197) appeared disordered and collapsed, supporting the overall percentage of overall secondary structure obtained by CD deconvolution. Then, LrtA has a chameleonic sequence and it is the first member of the HPF family involved in a self-association equilibrium, when isolated in solution.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Ribosómicas/química , Ribosomas/química , Synechocystis/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Soluciones , Synechocystis/metabolismo , TermodinámicaRESUMEN
Xylans are the most abundant polysaccharides forming the plant cell wall hemicelluloses, and they are degraded, among other proteins, by beta-xylosidase enzymes. In this work, the structural and biophysical properties of the family 52 beta-xylosidase from Geobacillus stearothermophilus, XynB2, are described. Size exclusion chromatography, analytical centrifugation, ITC, CD, fluorescence (steady state and ANS-binding) and FTIR were used to obtain the structure, the oligomerization state and the conformational changes of XynB2, as pH, chemical denaturants or temperature were modified. This report describes the first extensive conformational characterization of a family 52 beta-xylosidase. The active protein was a highly hydrated dimer, whose active site was formed by the two protomers, and it probably involved aromatic residues. At low pH, the protein was not active and it populated a monomeric molten-globule-like species, which had a conformational transition with a pK(a) of approximately 4.0. Thermal and chemical-denaturations of the native protein showed hysteresis behaviour. The protein at physiological pH was formed by alpha-helix (30%) and beta-sheet (30%), as shown by CD and FTIR. Comparison with other xylosidases of the same family indicates that the percentages of secondary structure seem to be conserved among the members of the family.
Asunto(s)
Bacillaceae/enzimología , Proteínas Bacterianas/química , Endo-1,4-beta Xilanasas/química , Dicroismo Circular/métodos , Dimerización , Concentración de Iones de Hidrógeno , Estructura Cuaternaria de Proteína/fisiología , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Espectroscopía Infrarroja por Transformada de Fourier/métodosRESUMEN
The isolation, purification, biochemical and biophysical characterization of the first reported beta-xylosidase from Geobacillus pallidus are described. The protein has an optimum pH close to 8 and an optimum temperature of 70 degrees C. These biochemical properties agree with those obtained by spectroscopic techniques, namely, circular dichroism (CD), infrared (FTIR) and fluorescence measurements. Thermal denaturation, followed by CD and FTIR, showed an apparent thermal denaturation midpoint close to 80 degrees C. The protein was probably a hydrated trimer in solution with, an elongated shape, as shown by gel filtration experiments. FTIR deconvolution spectra indicated that the protein contains a high percentage of alpha-helix (44%) and beta-sheet (40%). The sequencing of the N terminus and the biochemical features indicate that this new member of beta-xylosidases belongs to the GH52 family. Since there are no reported structural studies of any member of this family, our studies provide the first clue for the full conformational characterization of this protein family.